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1. PROOFS OF THEOREMS IN THE MAIN TEXT

Proof. (Proof of Theorem 2.1.) Note that

θ̃ =
1

m

m∑
j=1

θ̃Sj , θ̃Sj ≡
g

g − 1
θ̂ − 1

g − 1
θSj ,

where the θSj are as in (2.2). Clearly, averaging over the equivalence class of S does not affect the asymptotic

properties of θ̃. Thus, it suffices to consider the asymptotic behavior of θ̃S . First note that, for any two distinct

S, S′ ∈ S, because S and S′ are disjoint,
√
NT (θ̂S − θ|S|) and

√
NT (θ̂S′ − θ|S′|) are jointly asymptotically

normal as N,T →∞, with large N,T covariance equal to zero by Assumptions 2.1 and 2.2. Then, given that

S is a partition of {1, 2, . . . , T} and minS∈S |S|/T is bounded away from zero, it follows that, as N,T →∞,

√
NT

(
θ̂ − θT

θS − plimN→∞θS

)
d→ N

((
0
0

)
,

(
Σ−1 Σ−1

Σ−1 Σ−1

))
and, in turn,

√
NT (θ̃S − plimN→∞θ̂S)

d→ N (0,Σ−1). By the construction of θ̃S and by Assumption 2.3,
√
NT (plimN→∞θ̃S − θ0) =

√
NTo(T−1)→ 0

provided N,T → ∞ with N/T → ρ. Therefore, the bias is asymptotically negligible. This completes the

proof. 2

Proof. (Proof of Theorem 2.2.) Again, the averaging over the equivalence class of S can be ignored,

so it suffices to show that the maximizer of

l̇S(θ) ≡ g

g − 1
l̂(θ)− 1

g − 1
lS(θ)

satisfies the conclusions of the theorem. Let sS(θ) ≡ ∇θlS(θ) and ṡS(θ) ≡ ∇θ l̇S(θ). As in the proof of

Theorem 2.1, Assumptions 2.1, 2.4, and 2.5 imply that, for all θ ∈ N0,
√
NT (ṡS(θ)− s0(θ))

d→ N (0,∆(θ))

as N,T → ∞ with N/T → ρ. Let θ̇ be the maximizer of l̇S(θ) on Θ. Because ṡS(θ̇) = 0 with probability

approaching one, a Taylor expansion around θ0 yields

θ̇ − θ0 = −ḢS(θ0)−1ṡS(θ0) + op(1/
√
NT ),

where ḢS(θ) ≡ ∇θθ′ l̇S(θ). As ḢS(θ0)
p→ −Σ, it then follows that

√
NT (θ̇ − θ0)

d→ N (0,Σ−1) as N,T →∞
with N/T → ρ. This completes the proof. 2
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Proof. (Proof of Theorem 4.1.) First consider the infeasible estimator

µ† ≡ µ̂(θ0) =
1

NT

N∑
i=1

T∑
t=1

µit(α̂i(θ0), θ0).

A third-order expansion around αi(θ0) gives

µ†−µ∗=
1

NT

N∑
i=1

T∑
t=1

∇αµit(αi(θ0), θ0) (α̂i(θ0)−αi(θ0))+
∇ααµit(αi(θ0), θ0)

2
(α̂i(θ0)−αi(θ0))2+Op

(
1√
NT

)
.

Using the influence-function representation in Assumption (4.1),

1

NT

N∑
i=1

T∑
t=1

∇αµit(αi(θ0), θ0) (α̂i(θ0)− αi(θ0)) =
1
N

∑N
i=1 E[∇αµit(αi(θ0), θ0)]βi

T

+
1
N

∑N
i=1

∑+∞
j=−∞ E[∇αµit(αi(θ0), θ0)ψit−j ]

T
+Op

(
1√
NT

)
,

where the convergence can be deduced from Assumption (4.2). Also,

1

NT

N∑
i=1

T∑
t=1

∇ααµit(αi(θ0), θ0)

2
(α̂i(θ0)− αi(θ0))2 =

1
N

∑N
i=1 E[∇ααµit(αi(θ0), θ0)]σ2

i /2

T
+Op

(
1√
NT

)
follows in a similar manner; the higher-order bias can be ignored because T−2 = op(1/

√
NT ) under

rectangular-array asymptotics. Hence,

µ† − µ∗ =
D

T
+ o

(
1

T

)
+Op

(
1√
NT

)
.

As
√
N(µ∗ − µ0)

d→ N (0, var(E[µit(θ0, αi0)])), we equally obtain
√
N(µ† − µ0)

d→ N (0, var(E[µit(θ0, αi0)]))

as N,T → ∞ and N/T → ρ. To obtain the same result for the feasible estimator µ̂, note that another

expansion around θ0 further yields µ̂− µ† = E[∇θµ(αi(θ0), θ0)] (θ̂ − θ0) + op(1), so that

µ̂ = µ∗ +
D + E

T
+ o

(
1

T

)
+Op

(
1√
NT

)
,

from which
√
N(µ̂−µ∗) = op(1) readily follows. The corresponding results for the jackknife estimator follow

in analogous fashion as before. 2

2. ASYMPTOTIC CHARACTERIZATION OF BIAS CORRECTION VIA THE JACKKNIFE

2.1. First-order bias correction

Because

θ̃ =
1

m

m∑
j=1

θ̃Sj , θ̃Sj ≡
g

g − 1
θ̂ − 1

g − 1
θSj ,

and the set of cardinalities is the same for all members of the equivalence class of S, the large N , fixed T

bias of θ̃ is the same as that of θ̃S . Hence, it suffices to consider θ̃S . Recall that S = {S1, S2, . . . , Sg} is

a collection of g ≥ 2 subpanels partitioning {1, 2, . . . , T} in such a way that the sequence minS∈S |S|/T is

bounded away from zero as T grows.

Theorem S.2.1. Let Assumption 2.1 hold and assume that (2.5) is satisfied for some k ≥ 2. Then

plimN→∞θ̃S = θ0 +
B′2
T 2

+
B′3
T 3

+ . . .+
B′k
T k

+ o
(
T−k

)
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where

B′j ≡
g − T j−1

∑
S∈S |S|1−j

g − 1
Bj = O(1),

sign(B′j) = −sign(Bj), and |B′j | ≥ |Bj |
∑j−1
m=1 g

m.

Proof. Since |S|/T is bounded away from zero for all S ∈ S,

plimN→∞θS = θ0 +

k∑
j=1

∑
S∈S

|S|1−j

T
Bj + o(T−k) = θ0 +

g

T
B1 +

k∑
j=2

∑
S∈S

|S|1−j

T
Bj + o(T−k)

where, by convention,
∑k
j=2(·) = 0 if k = 1. The result regarding plimN→∞θ̂S follows easily, since B′j = O(1)

for j = 2, . . . , k because T/|S| = O(1) for all S ∈ S. Since T/|S| > 1, we have T j−1
∑
S∈S |S|1−j > g for all

j ≥ 2, so sign(B′j) = −sign(Bj). To prove that |B′j | ≥ |Bj |
∑j−1
m=1 g

m, it suffices to show that, for j ≥ 2, we

have

T j−1
∑
S∈S
|S|1−j − g ≥ (g − 1)

j−1∑
m=1

gm. (S.2.1)

By a property of the harmonic mean, for j ≥ 2,

T j−1
∑
S∈S
|S|1−j ≥ T j−1

∑
S∈S

(
T

g

)1−j

= gj ,

from which (S.2.1) follows. 2

2.2. Higher-order bias correction

Let

bj(G) ≡ (−1)hg1 . . . gh
∑

k1,...,kh≥0
k1+...+kh≤j−h−1

gk11 . . . gkhh , j = 1, 2, . . . , (S.2.2)

with the standard convention that empty sums and products are 0 and 1, respectively, so that bj(G) = 0 for

j ≤ h = |G|, and bj(∅) = 1 for all j ≥ 1.

Theorem S.2.2. Let Assumption 2.1 hold and assume that (2.5) is satisfied for some k ≥ h. If k = h, then

plimN→∞θ̂1/G = θ0 + o
(
T−h

)
. If k > h, then

plimN→∞θ̂1/G = θ0 +
B′h+1(G)

Th+1
+ . . .+

B′k(G)

T k
+ o

(
T−k

)
where B′j(G) = bj(G)Bj +O(T−1).

Proof. For all g ∈ G,

plimN→∞θ1/g = θ0 +

k∑
j=1

∑
S∈Sg

|S|1−j

T
Bj + o(T−k).

Hence

plimN→∞θ̂1/G = θ0 +

k∑
j=1

1 +
∑
g∈G

a1/g

 1

T j
−
∑
g∈G

a1/g
∑
S∈Sg

|S|1−j

T

Bj + o(T−k)

= θ0 +

k∑
j=1

cj(G)Bj
T j

+ o(T−k),
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where

cj(G) ≡ 1 +
∑
g∈G

a1/g

1−
∑
S∈Sg

T j−1|S|1−j


= (1− ι′A−1ι)−1 −
∑
g∈G

a1/g
∑
S∈Sg

T j−1|S|1−j

= (1− ι′A−1ι)−1 −
l∑

r=1

a1/gr
∑
S∈Sgr

T j−1|S|1−j

= (1− ι′A−1ι)−1
1−

l∑
r=1

(
l∑

s=1

Ars

) ∑
S∈Sgr

T j−1|S|1−j
 , (S.2.3)

and Ars is the (r, s)th element of A−1. For j ≤ l,

cj(G) = (1− ι′A−1ι)−1
(

1−
l∑

r=1

(
l∑

s=1

Ars

)
Ajr

)

= (1− ι′A−1ι)−1
(

1−
l∑

s=1

l∑
r=1

AjrA
rs

)
= 0.

This proves that plimN→∞θ̂1/G = θ0 + o
(
T−l

)
if k = l. Now consider the case k > l. We need to show

that cj(G) = bj(G) + O(T−1) for l < j ≤ k. For all g ∈ G and all S ∈ Sg, T |S|−1 = g + O(T−1), and, for

r = 1, . . . , k,
∑
S∈Sg T

r−1|S|1−r = gr + O(T−1). Hence A = A + O(T−1), where A is the l × l matrix with

elements Ars = grs . Let πj ≡ (gj1, . . . , g
j
l )
′. From (S.2.3), for l < j ≤ k,

cj(G) = (1− ι′A−1ι)−1
(

1−
l∑

r=1

(
l∑

s=1

Ars

)
gjr

)
+O(T−1)

= (1− ι′A−1ι)−1
(
1− π′jA−1ι

)
+O(T−1)

=

|A|−1
∣∣∣∣ A ι
π′j 1

∣∣∣∣
|A|−1

∣∣∣∣ A ι
ι′ 1

∣∣∣∣ +O(T−1) = (−1)l
|Vj |
|V |

+O(T−1),

where ι is an l × 1 vector of ones and

|V | =
∣∣∣∣ 1 ι′

ι A′

∣∣∣∣ , Vj =

∣∣∣∣ ι′ 1
A′ πj

∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
1 ι′ 1
ι A′ πj

∣∣∣∣∣∣ .
|V | is a Vandermonde determinant given by

|V | =
∏

0≤p<q≤l

(gq − gp), g0 ≡ 1.

Noting that the first row of Vl+1 is (00, 01, . . . , 0l+1), |Vl+1| is also a Vandermonde determinant, given by

|Vl+1| =
∏

−1≤p<q≤l

(gq − gp) = |V |
∏

1≤q≤l

gq, g−1 ≡ 0.

For j > l + 1, by the Jacobi-Trudi identity (see, e.g., Littlewood 1958, pp. 88), |Vj | can be written as the

product of |Vl+1| and a homogeneous product sum of g−1, g0, . . . , gl,

|Vj | = |Vl+1|
∑

k−1,k0,...,kl≥0
k−1+k0+...+kl=j−l−1

g
k−1

−1 g
k0
0 . . . gkll = |Vl+1|

∑
k1,...,kl≥0

k1+...+kl≤j−l−1

gk11 . . . gkll ,
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which also holds for j = l + 1. On collecting results, cj(G) = bj(G) +O(T−1) for l < j ≤ k. 2

Table S.1 gives the first few bj(G) for selected G. Together with Theorem S.2.2, the bj(G) indicate how

the jackknife transforms the higher-order bias terms.

Table S.1. Higher-order bias inflation factors

G b1(G) b2(G) b3(G) b4(G) b5(G)

∅ 1 1 1 1 1
{2} 0 −2 −6 −14 −20
{2, 3} 0 0 6 36 150
{2, 3, 4} 0 0 0 −24 −240

3. BIAS CORRECTION WITH OVERLAPPING SUBPANELS

We next consider h-order bias correction (h ≥ 1), with o ≥ 0 collections of two overlapping subpanels and

h − o ≥ 0 collections of non-overlapping subpanels. Let G ≡ {g1, . . . , gh}, where 1 < g1 < . . . < go <

2 ≤ go+1 < . . . < gh and go+1, . . . , gh are integers. We need T large enough so that T ≥ ghTmin and

dT/ge 6= dT/g′e for all distinct g, g′ ∈ G. For each g ∈ G, let Sg be a collection of subpanels covering

{1, . . . , T} such that (i) if g < 2, then Sg consists of two subpanels, each with dT/ge elements; (ii) if g ≥ 2,

then Sg is a collection of g non-overlapping subpanels forming an almost equal partition of {1, . . . , T}. With

{Sgj ; j = 1, 2, . . . ,mg} the equivalence class of Sg, define the split-panel jackknife estimator

θ̃1/G ≡

1 +
∑
g∈G

a1/g

 θ̂ −
∑
g∈G

a1/gθ1/g, θ1/g ≡
1

mg

mg∑
j=1

θSgj , θSgj ≡
∑
S∈Sg

|S|∑
S∈Sg |S|

θ̂S , (S.3.1)

where a1/gr is the rth element of (1− ι′A−1ι)−1A−1ι and A is the h× h matrix with elements

[A]r,s ≡
∑
S∈Sgs

(T/|S|)r−1∑
S∈Sgs

|S|/T
, r, s = 1, . . . , h. (S.3.2)

Note that, for o = 0, θ̂1/G reduces to the estimator given in (5.3). The coefficients a1/g, again, solve a linear

equation system so that the bias of θ̂1/G is o(T−h).

Let bj(G) be as in (S.2.2). Let

dT (G) ≡ 1 + (1− ι′A−1ι)−2ι′A′−1ΓA−1ι,

where Γ is the symmetric h× h matrix whose (r, s)th element, for r ≤ s, is

Γrs ≡
{

1
2 (A1r − 1) (2−A1s) if s ≤ o,
0 otherwise.

The following theorem shows that dT (G) is the variance inflation factor due to the subpanel overlap.

Theorem S.3.1. Let Assumptions 2.1, 2.2, and 2.3 hold. Assume that (2.5) holds for some k ≥ 2. If k = h,

then plimN→∞θ̂1/G = θ0 + o
(
T−h

)
. If k > h, then

plimN→∞θ̂1/G = θ0 +
B′h+1(G)

Th+1
+ . . .+

B′k(G)

T k
+ o

(
T−k

)
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where B′j(G) = bj(G)Bj +O(T−1). Further,√
NT

dT (G)
(θ̂1/G − θ0)

d→ N (0,Σ−1) as N,T →∞ and N/T → ρ,

and d(G) ≡ limT→∞ dT (G) ≥ 1, with equality if and only if o = 0.

Proof. The first part is proved along the same lines as in Theorem S.2.2. We have

plimN→∞θ̂1/G = θ0 +

k∑
j=1

cj(G)Bj
T j

+ o(T−k),

where now

cj(G) ≡ 1 +
∑
g∈G

a1/g

1−
∑
S∈Sg

T j |S|1−j∑
S∈Sg |S|


= (1− ι′A−1ι)−1

1−
l∑

r=1

(
l∑

s=1

Ars

) ∑
S∈Sgr

T j |S|1−j∑
S∈Sgr

|S|

 .

For j ≤ l, cj(G) = 0. Consider the case k > l. For all g ∈ G and r = 1, . . . , k,∑
S∈Sg

T r|S|1−r∑
S∈Sg |S|

=
T∑

S∈Sg |S|
∑
S∈Sg

T r−1|S|1−r =
g∑

S∈Sg 1
gr−1

∑
S∈Sg

1 +O(T−1)

= gr +O(T−1).

Hence, A = A +O(T−1) and, for l < j ≤ k,

cj(G) = (1− ι′A−1ι)−1
(
1− π′jA−1ι

)
+O(T−1),

where πj ≡ (gj1, . . . , g
j
l )
′. By the proof of Theorem 2, cj(G) = bj(G) +O(T−1) for l < j ≤ k, thus completing

the proof of the first part. We now derive the asymptotic distribution of θ̂1/G. For any pair of subpanels S

and S′ such that, as T →∞, T−1|S| → s > 0, T−1|S′| → s′ > 0, and T−1|S ∩ S′| → s∩ ≥ 0, we have

Avar

(
θ̂S
θ̂S′

)
=

(
1/s s∩/(ss

′)
s∩/(ss

′) 1/s′

)
⊗ Σ−1, (S.3.3)

where Avar(·) denotes the large N,T variance. Now consider θ1/g = 1
2 (θ̂S1

+ θ̂S2
) and θ1/g′ = 1

2 (θ̂S′1 + θ̂S′2),

where 1 < g < g′ < 2 and 1 ∈ S1 ∩ S′1. Then T−1|S1| = T−1|S2| → 1/g, T−1|S′1| = T−1|S′2| → 1/g′,

T−1|S1∩S2| → (2−g)/g, T−1|S′1∩S′2| → (2−g′)/g′, T−1|S1∩S′1| = T−1|S2∩S′2| → 1/g′, and T−1|S1∩S′2| =
T−1|S2 ∩ S′1| → (g + g′ − gg′)/(gg′). Application of (S.3.3) gives

Avar


θ̂S1

θ̂S2

θ̂S′1
θ̂S′2

 =


g g(2− g) g g + g′ − gg′

g(2− g) g g + g′ − gg′ g
g g + g′ − gg′ g′ g′(2− g′)

g + g′ − gg′ g g′(2− g′) g′

⊗ Σ−1,

and so

Avar

(
θ1/g
θ1/g′

)
=

1

2

(
g(3− g) 2g + g′ − gg′

2g + g′ − gg′ g′(3− g′)

)
⊗ Σ−1.

Let θ1/G ≡ (θ1/g1 , . . . , θ1/gl). Then Avar(vec θ1/G) = V ⊗ Σ−1, where vec(·) is the stack operator and V is

the symmetric l × l matrix whose (r, s)th element, for r ≤ s, is

Vrs ≡
{
gr + 1

2 (gs − grgs) if s ≤ o,
1 otherwise.
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Therefore, θ̂1/G = (1− ι′A−1ι)−1(θ̂− θ1/GA−1ι) is asymptotically normally distributed, centered at θ0, and

has large N,T variance

Avar(θ̂1/G) = (1− ι′A−1ι)−2(1− 2ι′A−1ι+ ι′A′−1VA−1ι)Σ−1

=

(
1 +

ι′A′−1 (V − ιι′)A−1ι
(1− ι′A−1ι)2

)
Σ−1 = d(G)Σ−1,

since V − ιι′ = Γ. The proof is completed by showing that, if o ≥ 1, the leading o × o submatrix of Γ is

positive definite. Let Lo be 2 times this submatrix, so that

Lo =

(
Lo−1 λo−1
λ′o−1 λoo

)
,

where

λo−1 ≡

 g1 − 1
...

go−1 − 1

 (2− go) , λoo ≡ (go − 1) (2− go) .

The (r, s)-th element of L−1o−1, for r ≤ s, is

Lrso−1 =



gr+1−gr−1

(gr−gr−1)(gr+1−gr) if r = s < o− 1,

2−go−2

(go−1−go−2)(2−go−1)
if r = s = o− 1,

− 1
gr+1−gr if r = s− 1,

0 otherwise,

where g0 ≡ 1. Hence

λ′o−1L
−1
o−1λo−1 = (2− go)2

(
o−2∑
r=1

hr +
(go−1 − 1)

2
(2− go−2)

(go−1 − go−2) (2− go−1)

)
,

where

hr =
(gr − 1)

2
(gr+1 − gr−1)

(gr − gr−1) (gr+1 − gr)
− 2

(gr − 1) (gr+1 − 1)

gr+1 − gr

= (gr − 1)

(
gr−1 − 1

gr − gr−1
− gr+1 − 1

gr+1 − gr

)
.

After some algebra,
∑o−2
r=1 hr = − (go−1−1)(go−2−1)

go−1−go−2
, and so

λoo − λ′o−1L−1o−1λo−1 =
(go − go−1) (2− go)

2− go−1
.

The determinant of Lo is

|Lo| = |Lo−1|
(
λoo − λ′o−1L−1o−1λo−1

)
= (2− go)

o∏
r=1

(gr − gr−1) ,

by induction. Clearly, 0 < |Lo| < |Lo−1| < . . . < |L1| < 1. All leading submatrices of Lo have a positive

determinant, so Lo is positive definite. 2

Overlapping subpanels allow |bj(G)| to be much smaller than is possible with collections of non-overlapping

subpanels because |bj(G)| increases rapidly in all g ∈ G. For the same reason, the optimal choice of

go+1, . . . , gh, from the perspective of minimizing the higher-order bias terms, is 2, . . . , h − o + 1. With

overlapping subpanels, however, the large N,T variance inflation factor, dT (G), increases rapidly with both
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the number of collections of overlapping subpanels, o, and the number of collections of non-overlapping

subpanels, h− o. So, in practice, one would hardly ever consider using more than one collection of overlap-

ping subpanels in combination with collections of non-overlapping subpanels. More generally, we would only

recommend the split-panel jackknife estimator with overlapping subpanels in applications where N is very

large and there is a great need for bias reduction, for example, when T is very small.

Intuitively, subpanel overlap causes large N,T variance inflation because the time periods, t, receive

unequal weights in those θ1/g where 1 < g < 2. In principle, it is possible to prevent variance inflation

by adding to θ1/g a term that has zero probability limit and equalizes those weights. As an example, take

g = 3/2 and suppose T is a multiple of 3 and T ≥ 3Tmin. Then

θ2/3 =
1

2
(θ̂1:2 + θ̂2:3),

where θ̂1:2 and θ̂2:3 use the first two-thirds and the last two-thirds of the time periods, respectively. Now

consider

θ̃2/3 ≡
1

2
(θ̂1:2 + θ̂2:3) +

1

12
(θ̂1:1 − 2θ̂2:2 + θ̂3:3),

where each t receives a weight 1/T and plimN→∞θ̃2/3 = plimN→∞θ2/3 because the second term of θ̃2/3 has

zero probability limit. Hence, replacing θ2/3 with θ̃2/3 in θ̂1/G, with unchanged weights a1/g, g ∈ G, will

leave the asymptotic bias unaffected but will reduce the large N,T variance. It is possible, for any T ≥ 2Tmin

and any g between 1 and 2 that divides T , to find θ̃1/g, similar to θ̃2/3, such that each t receives a weight

1/T and plimN→∞θ̃1/g = plimN→∞θ1/g. A drawback, however, is that the weights associated with certain

subpanel estimators in the zero plim term may become large, especially when g is close to 1, similar to the

weights of the delete-one estimates in the ordinary jackknife. In exploratory simulations with small T , we

found that this may substantially increase the variance, so we have not pursued this idea further.

4. DETAILS FOR THE GAUSSIAN AUTOREGRESSION

The model is

yit = αi0 + γ0yit−1 + εit, εit ∼ N (0, σ2), |γ0| < 1,

and the initial observations are yi0. The maximum-likelihood estimator of γ0, conditional on the yi0, is the

within-group estimator. The large N , fixed-T inconsistency of this estimator has been derived by Nickell

(1981) under stationarity and by Bun and Carree (2005) and Dhaene and Jochmans (2013) for arbitrary

initial observations.

First assume that the data are stationary. Re-arranging Equation (18) in Nickell (1981) allows writing the

inconsistency as

γT − γ0 = −(1 + γ0)
A

1−B
, A ≡ 1

T − 1

(
1− 1− γT0

T (1− γ0)

)
, B ≡ 2rA, r ≡ γ0

1− γ0
.

Let k be any positive integer. Since γT0 = o(T−k) as T →∞, we have

A =
1

T
− r

(
1

T 2
+

1

T 3
+ . . .

)
+ o(T−k)

for any k. Now it readily follows that the expansion γT − γ0 =
∑k
j=1Bj/T

j + O(T−k−1) holds for any k,

with the first few terms given by

γT − γ0 = −1 + γ0
T

− r (1 + γ0)

T 2
+
r (1 + γ0)

T 3
+

(
r + 4r2 + 2r3

)
(1 + γ0)

T 4
+O(T−5). (S.4.1)
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Although for every fixed T ≥ 2,
∑∞
j=1Bj/T

j is a convergent series, γT − γ0 6=
∑∞
j=1Bj/T

j due to the term

γT0 , which affects A and, therefore, γT but not Bj . Note, also, that the expansion extends to the case γ0 = 1,

because

lim
γ0↑1

(γT − γ0) = − 3

T + 1
= − 3

T
+

3

T 2
− 3

T 3
+ . . . ,

which justifies the jackknife as a bias-reduction method also in the case of a unit root. As a numerical

illustration of how the jackknife affects the non-eliminated higher-order bias terms, consider the case γ0 = .5.

From (S.4.1) and Table S.1, we obtain the expansions

plimN→∞γ̂ = .5− 1.5

T
− 1.5

T 2
+

1.5

T 3
+

10.5

T 4
+O(T−5),

plimN→∞γ̂1/2 = .5 +
3

T 2
− 9

T 3
− 147

T 4
+O(T−5),

plimN→∞γ̂1/{2,3} = .5 +
9

T 3
+

378

T 4
+O(T−5),

plimN→∞γ̂1/{2,3,4} = .5− 252

T 4
+O(T−5),

assuming that T increases in multiples of 12. The expansions show that higher-order versions of the jackknife

require a larger T before the leading non-eliminated bias term becomes dominant.

Now consider arbitrary initial observations, with (αi0, yi0) drawn from a distribution G. It is useful to

introduce the quantity

ψ2 ≡ E
[

(yi0 − µi)2

ς2

]
, µi ≡

αi0
1− γ0

, ς2 ≡ σ2
0

1− γ20
,

which is a measure of outlyingness of the initial observations with respect to their respective stationary

distributions. When the data are stationary, we have ψ2 = 1. Using results of Dhaene and Jochmans (2013)

we can write the inconsistency of γ̂ as

γT − γ0 = −(1 + γ0)
A

1−D
, D ≡ B + (1− ψ2)C, C ≡ 1

T − 1

(
1− γ2T0
1− γ20

− 1

T

(1− γT0
1− γ0

)2)
,

with A and B as above. As T →∞,

C =
A

1− γ0
− r

1 + γ0

(
1

T
+

1

T 2
+ . . .

)
+ o(T−k)

for any k. Therefore, γT − γ0 can again be expanded in powers of 1/T to any order. The first two terms are

given by

γT − γ0 = −1 + γ0
T

− r(1 + γ0)

T 2
+

(ψ2 − 1)/(1− γ0)

T 2
+O(T−3).

In the stationary case, the expansion reduces to (S.4.1). The expression further shows that (i) the first-order

bias is independent of the distribution of the initial observations (see also Hahn and Kuersteiner 2002); and

(ii) deviations from stationarity do show up in the second-order bias.

We now calculate the bias of the profile log-likelihood for arbitrary initial observations. The joint log-

likelihood for all parameters is

l(γ, σ2, α1, . . . , αN ) = −1

2
log σ2 − 1

2NTσ2

N∑
i=1

(yi − γyi− − αiι)′(yi − γyi− − αiι),

where yi ≡ (yi1, . . . , yiT )′, yi− ≡ (yi0, . . . , yiT−1)′, ι is a T × 1 vector of ones, and additive constants are
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omitted throughout. Profiling out α1, . . . , αN and σ2 gives α̂i(γ) = (yi − γyi−)′ι/T and

l̂ (γ) = −1

2
log

(
1

NT

N∑
i=1

(yi − γyi−)′M(yi − γyi−)

)
,

where M = IT− 1
T ιι
′. Using results in Dhaene and Jochmans (2013), as N →∞, l̂ (γ) converges in probability

to

lT (γ) = −1

2
log

(
1

T
E(yi − γyi−)′M(yi − γyi−)

)
= −1

2
log

(
1 +

(γ − γ0)2

1− γ20
+RT

)
, RT ≡ (γ − γ0)

2A

1− γ0
+ (γ − γ0)2

−D
1− γ20

.

If instead of α̂i(γ) we use

αi(γ) = plimT→∞ (yi − γyi−)
′
ι/T = (1− γ)

αi0
1− γ0

,

we obtain an infeasible log-likelihood whose probability limit, as N →∞, is found as

l0 (γ) = −1

2
log

(
1

T
E(yi − γyi− − αi(γ)ι)′(yi − γyi− − αi(γ))

)
= −1

2
log

(
1 +

(γ − γ0)2

1− γ20
+R0

)
, R0 ≡

(γ − γ0)2

T (1− γ20)

(
1− γ2T0
1− γ20

)
(ψ2 − 1),

after a tedious but straightforward calculation. Note that γ0 maximizes l0 (γ) for every T and ψ2. The

asymptotic bias of l̂ (γ) is

lT (γ)− l0 (γ) = −1

2
log (1 +R) = −1

2

(
R− 1

2
R2

)
+O

(
T−3

)
where

R =
RT −R0

1 + (γ−γ0)2
1−γ2

0
+R0

= O
(
T−1

)
,

given that RT and R0 are O(T−1). Using D = 2rA+ (1− ψ2)C, we can write

RT −R0 = (γ − γ0)
2A

1− γ0
+ (γ − γ0)2

−2rA

1− γ20
+ F

where

F ≡ (γ − γ0)2

1− γ20

(
C − 1− γ2T0

T (1− γ20)

)(
ψ2 − 1

)
=

(γ − γ0)2

1− γ20

(
1

T − 1

(
1

1− γ20
− 1

T

(
1

1− γ0

)2
)
− 1

T (1− γ20)

)(
ψ2 − 1

)
+ o(T−k)

for any k. Clearly, F = O(T−2). It follows that the O(T−1) term of lT (γ)− l0 (γ) is free of ψ2. The effect of

non-stationary initial observations again shows up in the second-order bias term of the profile log-likelihood.

Table S.2 presents simulation results for the Gaussian autoregression with non-stationary initial obser-

vations, where the jackknife is bias-reducing. We generated yi0 ∼ N (αi0/(1 − γ0), ψ2σ2
0/(1 − γ20)) with ψ

set to 0 and 2. These values correspond, respectively, to inlying and outlying initial observations relative to

the steady-state distributions. The results show that the bias-corrected estimators continue to remove most

of the small-sample bias from γ̂. The jackknife estimator γ̃1/2 generally performs better than the plug-in

estimator γ̃HK = γ̂ + (1 + γ̂)/T . When γ0 = .5, the 5%-level validity tests both overreject the null when T is

small, but the overrejection rates decrease as T increases, as predicted by the theory. This is because in the

early periods the time-series are moving toward their steady state. This move becomes larger as |ψ| moves
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farther away from 1. The impact of ψ vanishes as γ0 → 1 (Dhaene and Jochmans 2013), which explains the

much improved acceptance rates for very small T when γ0 is increased to .95.

Table S.2. Small-sample performance in a non-stationary Gaussian autoregression

bias confidence validity

T γ0 ψ γ̂ γ̃HK γ̃1/2 γ̇1/2 γ̂ γ̃HK γ̃1/2 γ̇1/2 t̃1/2 ṫ1/2

4 .5 0 −.537 −.296 −.191 −.239 .000 .022 .304 .090 .601 .458

6 .5 0 −.340 −.147 −.054 −.121 .000 .233 .726 .373 .639 .688
8 .5 0 −.243 −.086 −.012 −.070 .000 .507 .834 .626 .737 .818

12 .5 0 −.151 −.039 .007 −.031 .000 .778 .866 .832 .855 .904
4 .5 2 −.244 .070 .084 −.099 .001 .747 .681 .687 .376 .480
6 .5 2 −.178 .043 .064 −.059 .001 .798 .662 .769 .304 .593
8 .5 2 −.142 .028 .044 −.039 .002 .854 .711 .836 .373 .691

12 .5 2 −.102 .014 .023 −.020 .013 .907 .808 .895 .585 .809
4 .95 0 −.609 −.274 −.220 −.405 .000 .023 .220 .000 .950 .746
6 .95 0 −.441 −.189 −.128 −.290 .000 .016 .332 .000 .945 .870
8 .95 0 −.346 −.146 −.088 −.225 .000 .014 .419 .000 .934 .915

12 .95 0 −.243 −.101 −.051 −.154 .000 .014 .520 .000 .922 .940
4 .95 2 −.511 −.152 −.111 −.330 .000 .370 .620 .001 .947 .729
6 .95 2 −.347 −.079 −.025 −.219 .000 .513 .824 .001 .928 .865
8 .95 2 −.257 −.046 .008 −.159 .000 .660 .850 .002 .909 .896

12 .95 2 −.166 −.017 .028 −.098 .000 .809 .717 .008 .875 .927

Model: yit = αi0 + γ0yit−1 + εit, εit ∼ N (0, σ2
0). Data generated with N = 100, σ2

0 = 1, αi0 ∼ N (0, 1),

yi0 ∼ N (αi0/(1− γ0), ψ2σ2
0/(1− γ20)). 10, 000 Monte Carlo replications.

5. DETAILS FOR THE AVERAGE DERIVATIVE OF THE SURVIVAL FUNCTION

With φ(·) the standard normal density, γ̂ the within-group estimate, σ̂2 the mean squared residual, α̂i(γ, σ) =
1
T

∑T
t=1(yit − γyit−1), and ỹit ≡ yit − 1

T

∑T
t=1 yit, the relevant expressions to form an estimate of σ2

c are

µit = µit(γ, σ, αi) = γφ (qit) /σ, qit ≡ (αi + γyit−1)/σ,

∇αi
µit = −qitµit/σ, ∇γ∂µit = µit (1− γqityit−1/σ) /γ,

∇σµit = µit
(
q2it − 1

)
/σ, ψit = yit − αi − γyit−1,

∇γα̂i(γ, σ) = − 1

T

T∑
t=1

yit−1, ∇σα̂i(γ, σ) = 0,

and

Σ̂ =
T − 1

NT 2

N∑
i=1

T∑
t=1

1

σ̂2

(
ỹ2it−1 0

0 3r2it − 1

)
, rit ≡ (ỹit − γ̂ỹit−1) /σ̂,

together with those given in the main text.

6. DETAILS FOR THE HIGHER-ORDER EXPANSIONS IN THE LOGIT MODEL

Suppose that the binary variable yit is generated by

yit = 1{αi + θyit−1 + εit ≥ 0},

where εit is i.i.d. with cdf Λ(u) = eu/(1 + eu). We observe yit for t = 0, . . . , T . We work with the likehood

function that conditions on the yi0. The true values αi0 are assumed to be i.i.d. draws from some (unknown)

distribution G.

Suppose, initially, that G is degenerate. We omit the index i. Let y ≡ (y0, . . . , yT ) be a binary sequence

of length T + 1. For every possible y, define the vector of relative transition frequencies w ≡ w(y) ≡
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(w00, w01, w10, w11)′ ∈ ∆3, where

w00 ≡ 1
T

∑T
t=1 1(yt−1 = 0, yt = 0), w01 ≡ 1

T

∑T
t=1 1(yt−1 = 0, yt = 1),

w10 ≡ 1
T

∑T
t=1 1(yt−1 = 1, yt = 0), w11 = 1

T

∑T
t=1 1(yt−1 = 1, yt = 1),

and ∆3 is the 3-dimensional unit simplex. Also, define the vector of model transition probabilities p ≡
p(α, θ) ≡ (p00, p01, p10, p11)′, where

p00 ≡ Pr[yt = 0|yt−1 = 0;α, θ] = Λ (−α) , p01 ≡ 1− p00 = Λ (α) ,

p10 ≡ Pr[yt = 0|yt−1 = 1;α, θ] = Λ (−α− θ) , p11 ≡ 1− p10 = Λ (α+ θ) .
(S.6.1)

The contribution of any observed sequence y to the profile log-likelihood depends on y only via w = w(y)

and is given by

l̂w(θ) = w′ log p(αw(θ), θ),

where

αw(θ) ≡ arg max
α∈A

w′ log p(α, θ)

(we write αw(θ) instead of α̂(θ)). The profile log-likelihood for N =∞ is

lT (θ) = E[w′ log p(αw(θ), θ)], (S.6.2)

where the expectation is over w. Let $ ≡ E[w]. Note that $ depends on θ0 and G but not on T . We obtain

l0(θ) from lT (θ) by replacing αw(θ) with

α$(θ) ≡ arg max
α∈A

E[w′ log p(α, θ)],

which gives

l0(θ) = E[w′ log p(α$(θ), θ)] = $′ log p(α$(θ), θ). (S.6.3)

We can write (S.6.2) and (S.6.3) more compactly as

lT (θ) = E[g(w, θ)], l0(θ) = g($, θ),

where we define g(v, θ) ≡ v′ log p(αv(θ), θ) for every v ≡ (v00, v01, v10, v11)′ ∈ ∆3. A closed-form expression

for αv(θ) is given below. Hence, given that

lT (θ) =
∑
w

Pr(w)g(w, θ),

where Pr(w) is the probability of obtaining w, we can calculate lT (θ) and l0(θ) exactly.

We now examine the expansion of lT (θ). Because w is a sample mean converging to $ and because all mo-

ments of w exist, we can expand lT (θ) = E[g(w, θ)] around the point w = $ provided that, roughly speaking,

g(v, θ) is sufficiently smooth in v for every θ. We use the following notation. For q ≡ (q00, q01, q10, q11)′ ∈ N4,

let ∇qg(v, θ) ≡ ∂ι
′qg(v, θ)/∂vq0000 . . . ∂vq1111 , where ι′q is the sum of the elements of q, and (w − $)q ≡

Πij=0,1(wij − $ij)
qij . We show below that g(v, θ) is bounded in v on ∆3 and that, for all q, ∇qg(v, θ)

is bounded in v on a neighborhood of $. Therefore, by Theorem 2 of Hurst (1976), it follows that, as

T →∞,

E[g(w, θ)] = g($, θ) +

2k∑
j=1

∑
ι′q=j

∇qg($, θ)

q00! . . . q11!
E[(w −$)q] +O(T−k−1/2)

for every k. Furthermore, for every q,

E[(w −$)q] =

ι′q−1∑
r=b(ι′q+1)/2c

cr(q)

T r
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with coefficients cr(q) depending on r and q but not on T . On collecting terms of the same order, we conclude

that lT (θ) satisfies the expansion in (2.5) for every θ and any k.

So far we have assumed that G is degenerate, i.e., αi0 = α0 for all i. The functions lT (θ) and l0(θ) and

the functions Cj(θ) that appear in the expansion all implicitly depend on α0. When G is non-degenerate,

these functions have to be replaced with their integrals with respect to G provided that the integrals exist.

A sufficient condition for the existence of the integrals is that G has bounded support.

Technical details After some algebra, we obtain αv(θ) in closed form:

αv(θ) = arg max
α∈A

v′ log p(α, θ) = − log xv, (S.6.4)

where

xv =
1

2

(
av + bve

θ +

√
(av + bveθ)

2
+ 4 (av + bv + 1) eθ

)
,

av =
v00 − v11
v01 + v11

, bv =
v10 − v01
v01 + v11

,

and with the understanding that limits are taken as v approaches the boundary of ∆3. In particular, as

v01, v11 → 0, we have av → ∞ or bv → ∞, implying xv → ∞ and αv(θ) → −∞; and, as v00, v10 → 0, we

have av + bv + 1 → 0, xv → 0, and αv(θ) → ∞. Note also that av + bv + 1 ≥ 0, ensuring xv ≥ 0. Using

(S.6.1) and (S.6.4), we have

g(v, θ) = v′ log p(αv(θ), θ)

= v00 log
xv

1 + xv
+ v01 log

1

1 + xv
+ v10 log

xv
eθ + xv

+ v11 log
eθ

eθ + xv
= A+B + C +D (say).

To show that g(v, θ) is bounded in v on ∆3, it suffices to examine A and C as xv → 0 and B and D as

xv → ∞. When xv → 0, we have av + bv + 1 → 0, v00 → 0, v10 → 0, v00 log xv → 0, and v10 log xv → 0, so

A and C are bounded. When xv →∞, we have av + bve
ρ →∞, v01 → 0, v11 → 0, v01 log(1 + xv)→ 0, and

v11 log(1 + xv)→ 0, so B and D are bounded. We now examine the partial derivatives of g with respect to

v in a neighborhood of $. Consider the term A. Because $ is an interior point of ∆3, xv is bounded away

from zero and infinity in a neighborhood of $. Therefore, the function log x
1+x is bounded in a neighborhood

of x$, and so are its derivatives of all orders. Further, xv, viewed as a function of av and bv, is bounded in a

neighborhood of a$ and b$, and so are its partial derivatives of all orders with respect to av and bv because

the square-root term that appears in xv is bounded away from zero. Finally, the partial derivatives of av

and bv of all orders are bounded in a neighborhood of $ because the denominator of av and bv is bounded

away from zero. By the chain rule, the partial derivatives of A of all orders are bounded as required. By the

same reasoning, the same is true for B,C, and D. 2

7. UNINFORMATIVENESS AND SEPARATION IN BINARY PANEL DATA

The maximum-likelihood estimator of a dynamic binary panel model with fixed effects may be indeterminate

or infinite. This occurs when the profile likelihood is flat or when its maximum is reached at infinity,

respectively. We characterize these situations for binary AR(1) data without covariates or with one covariate.
1

This leads to an explicit derivation of Tmin and T ′min.

1
The problem of data separation in binary and multinomial data is well known in the cross-sectional setting. Albert and

Anderson (1984) give a complete taxonomy for multinomial data.
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7.1. Binary choice without covariates

The model is yit = 1(αi + ρyit−1 − εit ≥ 0), where the cdf of εit, say F , is continuous and strictly increasing

on the real line. The contribution of unit i to the profile log-likelihood is

l̂i(ρ) = max
αi

{Ai log (1− F (αi)) +Bi logF (αi) +Ci log (1− F (αi + ρ)) +Di logF (αi + ρ)} , (S.7.1)

where

Ai ≡ T−1
∑T
t=1 1(yit−1 = 0, yit = 0), Bi ≡ T−1

∑T
t=1 1(yit−1 = 0, yit = 1),

Ci ≡ T−1
∑T
t=1 1(yit−1 = 1, yit = 0), Di ≡ T−1

∑T
t=1 1(yit−1 = 1, yit = 1),

are transition frequencies.

Let ρ̂i ≡ arg maxρ l̂i(ρ) and ρ̂ ≡ arg maxρN
−1∑N

i=1 l̂i(ρ). A sequence yi = (yi0, . . . , yiT ) is uninformative

if l̂i(ρ) is constant. This occurs if and only if

Ai = Bi = 0 or Ci = Di = 0 or Ai = Ci = 0 or Bi = Di = 0. (S.7.2)

The “if” part follows from noting that l̂i(ρ) corresponding to the four cases in (S.7.2) is

l̂i(ρ) = max
αi

{Ci log (1− F (αi + ρ)) +Di logF (αi + ρ)} = max
αi

{Ci log (1− F (αi)) +Di logF (αi)} ,

l̂i(ρ) = max
αi

{Ai log (1− F (αi)) +Bi logF (αi)} ,

l̂i(ρ) = max
αi

{Bi logF (αi) +Di logF (αi + ρ)}Bi logF (+∞) +Di logF (+∞+ ρ) = 0,

l̂i(ρ) = max
αi

{Ai log (1− F (αi)) + Ci log (1− F (αi + ρ))} = 0,

respectively. In each case l̂i(ρ) is constant. For the “only if” part, if (S.7.2) does not hold, then either Bi 6= 0

and Ci 6= 0, or at most one of Ai, Bi, Ci, Di is zero (note that Bi = Ci = 0, Ai 6= 0, and Di 6= 0 cannot

jointly occur). In all of these cases, l̂i(ρ) can be taken to −∞ by taking ρ to −∞ or +∞, while l̂i(ρ) is finite

if ρ is finite; hence l̂i(ρ) is non-constant. Because ρ̂i is indeterminate if and only yi is uninformative, ρ̂ is

indeterminate if and only if all yi are uninformative. Uninformative sequences are removed, as they do not

affect ρ̂. A sequence yi is monotone if Bi = 0 or Ci = 0. A sequence yi is semi-alternating if Ai = 0 or

Di = 0. We have ρ̂i = +∞ if and only if yi is informative and monotone, and ρ̂i = −∞ if and only if yi

is informative and semi-alternating. Suppose there is at least one informative sequence. Then, ρ̂ = +∞ if

and only if all informative sequences are monotone, and ρ̂ = −∞ if and only if all informative sequences are

semi-alternating. When T = 2, there are eight possible sequences yi. Only two of these, (0, 1, 0) and (1, 0, 1),

are informative. Both are semi-alternating, so either ρ̂ is indeterminate or ρ̂ = −∞, implying ρ2 = −∞ and

Tmin > 2. Further, both have Ai = Di = 0, Bi = Ci = 1
2 , and

l̂i(ρ) = max
αi

1

2
{logF (αi) + log(1− F (αi + ρ))} ≡ λ(ρ) (say).

It follows that l2(ρ) = πλ(ρ) + c, where π is the probability that yi is informative and c is an inessential

constant. Hence T ′min = 2. When T = 3, some informative sequences are monotone, for example, (0, 0, 1, 1),

and others are semi-alternating, for example, (0, 1, 1, 0). Hence Tmin = 3.
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7.2. Binary choice with a covariate

The contribution of unit i to the profile log-likelihood is

l̂i(ρ, β) = max
αi

T−1
∑T

t=1
{Ai log (1− F (αi + βxit)) +Bi logF (αi + βxit)

+Ci log (1− F (αi + ρ+ βxit)) +Di logF (αi + ρ+ βxit)} ,

with Ai, . . . , Di as before.

Assume that xit 6= xit′ for t 6= t′. Let (ρ̂i, β̂i) ≡ arg maxρ,β l̂i(ρ, β) and (ρ̂, β̂) ≡ arg maxρ,β N
−1∑N

i=1 l̂i(ρ, β).

A sequence yi is uninformative about β0 if l̂i(ρ, β) is constant in β, which occurs if and only if Ai = Ci = 0

or Bi = Di = 0. A sequence yi is uninformative about ρ0 if l̂i(ρ, β) is constant in ρ, which occurs if and

only if (S.7.2) holds. The maximum-likelihood estimator (ρ̂ or β̂) is indeterminate if and only if all yi are

uninformative about the corresponding parameter. Indeterminacy of β̂ implies indeterminacy of ρ̂. Remove

the sequences that are uninformative about ρ0 so that any remaining yi is informative about ρ0 and β0. A

sequence yi is separable if there exists (ρ, β) 6= (0, 0) such that

ρyit−1 + βxit ≥ ρyit′−1 + βxit′ for all t, t′ ≥ 1 : yit = 1 and yit′ = 0. (S.7.3)

ρ̂i = ±∞ or β̂i = ±∞ if and only if yi is separable, and ρ̂ = ±∞ or β̂ = ±∞ if and only if all yi are jointly

separable, i.e., there exists (ρ, β) 6= (0, 0) such that (S.7.3) holds for all i. To check for joint separability, let

T a,bi = {t : yit−1 = a, yit = b} for a, b ∈ {0, 1}, define the intervals

Xa,b
i =

{
[mint∈Ta,b

i
xit, maxt∈Ta,b

i
xit] if T a,bi 6= ∅,

∅ if T a,bi = ∅,

and note that (S.7.3) holds for all i if and only if

βX0,1
i ≥ βX0,0

i , βX1,1
i ≥ βX1,0

i , for all i,

βX0,1
i ≥ ρ+ βX1,0

i , βX1,1
i ≥ −ρ+ βX0,0

i , for all i,
(S.7.4)

where S1 ≥ S2 means s1 ≥ s2 for all s1 ∈ S1 and s2 ∈ S2. It suffices to check whether (S.7.4) has a non-zero

solution with β ∈ {−1, 0, 1}. For β = 0, there is a solution with ρ 6= 0 if and only if all yi are monotone

(because then either X0,1
i or X1,0

i is empty) or all yi are semi-alternating (because then either X1,1
i or X0,0

i

is empty). For β ∈ {−1, 1}, define

ρmax(β) = max{ρ : βX0,1
i ≥ ρ+ βX1,0

i for all i}, ρmin(β) = min{ρ : βX1,1
i ≥ −ρ+ βX0,0

i for all i}.

Thus, if and only if

X0,1
i ≥ X0,0

i , X1,1
i ≥ X1,0

i , for all i; ρmax(1) ≥ ρmin(1);

or

X0,1
i ≤ X0,0

i , X1,1
i ≤ X1,0

i , for all i; ρmax(−1) ≥ ρmin(−1),

is there a solution with β ∈ {−1, 1}.

8. EMPIRICAL APPLICATION

Table S.3 presents descriptive statistics of the data used in the empirical application. Table S.4 provides the

estimation results of the model

yit = 1{αi0 + γ0yit−1 + x′itδ0 + d′itβ0 ≥ εit},
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where εit are independent standard-normal innovations, xit is the same vector of time-varying covariates as

in the main text, and dit is a set of year dummies.

Table S.3. Descriptive statistics

mean and standard deviation (in parentheses) over all units (1461 observations)

year 1980 1981 1982 1983 1984 1985 1986 1987 1988

lagged participation .722 .707 .695 .692 .711 .746 .740 .741 .735
(.448) (.455) (.461) (.462) (.453) (.435) (.439) (.438) (.441)

# children 0–2 .323 .331 .318 .261 .211 .190 .168 .137 .103
(.528) (.537) (.533) (.494) (.455) (.440) (.408) (.363) (.325)

# children 3–5 .307 .313 .321 .330 .337 .320 .268 .215 .185
(.524) (.525) (.535) (.524) (.540) (.541) (.505) (.463) (.430)

# children 6–17 .934 .960 .973 1.015 1.034 1.077 1.124 1.164 1.165
(.138) (1.124) (1.102) (1.081) (1.068) (1.062) (1.064) (1.081) (1.109)

husband income 39.200 39.041 39.115 40.541 43.039 43.572 44.485 45.580 46.038
(23.514) (23.598) (30.601) (34.375) (41.915) (39.798) (42.621) (53.411) (55.784)

age 33.310 34.251 35.300 36.279 37.288 38.358 39.272 40.309 41.336
(8.841) (8.848) (8.829) (8.861) (8.863) (8.847) (8.845) (8.837) (8.857)

mean and standard deviation (in parentheses) over units who change participation status (664 observations)

year 1980 1981 1982 1983 1984 1985 1986 1987 1988

lagged participation .580 .538 .511 .505 .547 .623 .610 .613 .599
(.494) (.499) (.500) (.500) (.498) (.485) (.488) (.487) (.490)

# children 0–2 .411 .434 .408 .336 .262 .238 .199 .157 .108
(.572) (.595) (.577) (.547) (.498) (.483) (.429) (.388) (.330)

# children 3–5 .372 .381 .407 .423 .444 .408 .339 .271 .229
(.559) (.564) (.582) (.563) (.586) (.582) (.556) (.514) (.462)

# children 6–17 .840 .908 .955 1.035 1.098 1.181 1.264 1.355 1.378
(1.109) (1.116) (1.095) (1.075) (1.078) (1.079) (1.070) (1.105) (1.139)

husband income 40.340 40.693 40.402 42.714 45.742 45.925 46.921 47.749 48.438
(23.838) (24.445) (33.351) (41.737) (49.612) (44.334) (50.015) (49.305) (54.358)

age 31.574 32.526 33.565 34.559 35.592 36.622 37.544 38.581 39.611
(8.320) (8.318) (8.300) (8.342) (8.352) (8.317) (8.320) (8.309) (8.333)

Data source: PSID 1979–1988.

Table S.4. Female labor-force participation: Estimation results including time dummies

model parameters

θ̂ θ̃1/2 θ̃HK θ̃F θ̇1/2 θ̇AH θ̇C
lagged participation .757 1.351 .994 1.034 1.057 .982 1.096

(.043) (.053) (.043) (.043) (.053) (.043) (.043)
# kids 0–2 −.553 −.639 −.478 −.436 −.534 −.473 −.409

(.058) (.087) (.058) (.058) (.087) (.058) (.058)
# kids 3–5 −.290 −.360 −.226 −.203 −.256 −.188 −.188

(.053) (.091) (.054) (.054) (.091) (.054) (.054)
# kids 6–17 −.074 −.145 −.055 −.049 −.063 .032 −.038

(.043) (.078) (.043) (.043) (.078 (.043) (.043)
log husband income −.252 −.313 −.233 −.213 −.257 −.010 −.214

(.055) (.075) (.056) (.056) (.075) (.055) (.056)
age 2.333 1.762 2.094 1.832 2.170 −.144 1.814

(.627) (1.082) (.636) (.636) (1.082) (.631) (.639)
age squared −.244 −.151 −.212 −.188 −.222 .014 −.187

(.052) (.118) (.053) (.053) (.118) (.052) (.053)

Coefficients for age and age squared are multiplied by 10 and 100, respectively. Standard errors in parentheses.
Data source: PSID 1979–1988.
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