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Abstract

Identification of peer effects is complicated by the fact that the individuals under
study may select their peers. Random assignment to peer groups has proven useful
to sidestep such a concern. In the absence of a formal randomization mechanism it
needs to be argued that assignment is ‘as good as’ random. This paper introduces
a simple yet powerful test to do so. We provide theoretical results for this test. As
a by-product we equally obtain such results for an approach popularized by Guryan,
Kroft and Notowidigdo (2009). These results help to explain why this approach
suffers from low power, as has been observed elsewhere.
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Introduction

A concern when trying to infer peer effects is that the individuals under study, at least

partially, select their reference group. Exploiting the random assignment of individuals to

peer groups has proven to be a fruitful way forward. Sacerdote (2001) and Zimmerman
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(2003) estimate peer effects in college achievement by making use of the (conditional)

random assignment of students to roommates. Katz, Kling and Liebman (2001) and Duflo

and Saez (2003) are other early examples that use such exogenous variation in other settings.

In many studies on peer effects there is no formal randomization mechanism. In others

the randomization is done at a higher level than under the experimental ideal. Examples

of the former situation are in the work of Bandiera, Barankay and Rasul (2009) and Mas

and Moretti (2009), both of which concern workers being assigned to teams or shifts. An

example of the latter is Project STAR, where students appear to have been randomly

assigned only to classes of a certain size, and not to classrooms themselves; Sojourner

(2013) provides a detailed discussion on this. In such settings more work is needed to

argue that the assignment of peers is ‘as good as random’.

Sacerdote (2001) pioneered a regression-based approach to test for random assignment.

Guryan, Kroft and Notowidigdo (2009) pointed out that this test favors alternatives where

there is negative assortative matching between peers, and suggested a modification.1 Their

proposal has been used frequently—Carrell, Fullerton and West (2009), Sojourner (2013),

and Lu and Anderson (2015) are examples—but it has not been subject to theoretical

investigation. The limited simulation evidence available suggests that it is size correct

but has low power (Stevenson, 2015). Thus, the test would have difficulty in detecting

violations of the null of random assignment.

In this paper we propose an alternative adjustment to the test of Sacerdote (2001), and

study its properties under the null and under various local alternatives. The approach is

based on a bias calculation and is straightforward to implement (a Stata implementation

is also available). It is related in spirit to calculations in Angrist (2014) and Caeyers and

Fafchamps (2020) in a specific case but formalizes, operationalizes, and extends it in various

1The intuition given in Guryan, Kroft and Notowidigdo (2009) and repeated elsewhere in the literature

(Caeyers and Fafchamps, 2020) is that individuals cannot be their own peers. While this argument explains

why the test favors negative alternatives it does not explain the cause of the size distortion. In fact, minor

modifications to the proof of (1.2) below show that size distortion would also be present when individuals

can be their own peers. Furthermore, in such a case the test will tend to favor alternatives where assortative

matching is positive. In all cases, the cause of the (asymptotic) size distortion is the presence of fixed effects.
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directions; more detail on this is given below. The test allows both peer groups and urns

from which peers are drawn to be of the same or of different sizes, accommodates designs

in which peer groups need not be mutually exclusive, and is robust to heteroskedasticity

of arbitrary form. Because assignment is usually random only conditional on allocation to

urns, our test procedure, like Sacerdote’s (2001), controls for fixed effects at the urn level.

A straightforward modification to the test that allows to control for additional covariates

is also presented. Finally, we also provide a multivariate generalization of our testing

procedure.

An important remark is that the null model underlying Sacerdote’s (2001) approach is

formally equivalent to a linear-in-means model of social interactions in which coefficients

involving peer effects are equal to zero. Consequently, our test can equally be applied to

test for the presence of peer effects in this workhorse model. This is useful because the

test does not require the usual conditions for identification in such settings in order to

be applicable (see, e.g., Bramoullé, Djebbari and Fortin 2019 for a recent overview of this

literature). Furthermore, identification is much easier to establish once such effects can be

ruled out.

The derivations underlying our test allow to establish formal results for the influential

test of Guryan, Kroft and Notowidigdo (2009). First, we confirm that this test is indeed

size correct. Furthermore, their proposal corresponds to an alternative (and implicit) way

of correcting for the bias, at least when either an urn-level homoskedasticity assumption

is satisfied, or when peer groups are mutually exclusive. This alternative approach is

only implementable when there is variation in urn size, however. Second, we provide an

asymptotic representation that helps to explain the low power that has been observed for

the test of Guryan, Kroft and Notowidigdo (2009). We illustrate the power loss through

theoretical power calculations and show that the test can have trivial power against a wide

range of alternatives. In all cases considered our test is more powerful than theirs, and

considerably so. A comparison with other proposals available in the literature is also made

below.
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1 Testing random assignment

Consider a setting where we observe stratified data on r independent urns containing,

respectively, n1, . . . nr individuals. Within each urn individuals are assigned to peer groups.

The assignment of peers in urn g is recorded in the ng × ng matrix

(Ag)i,j :=

 1 if i and j are peers

0 if they are not
;

as individuals cannot be their own peer matrix Ag has only zeros on its main diagonal. The

number of peers of individual i is mg(i) :=
∑ng

j=1(Ag)i,j. We assume that each individual

has at least one peer but do not otherwise restrict peer groups; they may be of different

sizes and are allowed to overlap. The goal is to test whether individuals are randomly

assigned to their respective peer groups. Clearly, while we maintain the terminology of

urns and peers for simplicity, this setup covers general adjacency matrices and, therefore,

arbitrary network structures.2

Let xg,i be an observable characteristic of individual i in urn g. Sacerdote (2001)

noted that, if peer-group assigment is random, xg,i will be (independent and, hence, also)

uncorrelated with xg,j for all j ∈ [i], where [i] := {j : (Ag)i,j = 1} is the set of i’s peers.

Letting x̄g,[i] := mg(i)
−1∑ng

j=1(Ag)i,j xg,j, the average value of the characteristic among

i’s peers, he then proceeded by testing whether the slope coefficient in a within-group

regression of xg,i on x̄g,[i] is statistically different from zero. The within-group estimator

controls for fixed effects at the urn level. This is important as, even if assignment is

randomized within urns, individuals might be assigned to an urn based on other attributes.

In the data of Sacerdote (2001), for example, students are randomly assigned to rooms

conditionally on gender and their answers to a set of survey questions. If peer assignment

within urns is presumed to only be random conditional on a set of additional covariates

wg,i, say, they can equally be controlled for by including them as additional regressors (see

2Everything to follow can be further generalized to deal with situations where the adjacency matrices

A1, . . . ,Ar are asymmetric, have non-binary entries, and have a non-zero main diagonal. To maintain

focus we do not pursue the most general case here.
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below).

1.1 Bias calculation

As observed by Guryan, Kroft and Notowidigdo (2009), the test just described will typically

not be size correct. To see the problem, and a path forward, we start by a bias calculation.

For now we ignore any additional covariates wg,i and thus consider a fixed-effect regression

of xg,i on x̄g,[i]. The within-group estimator, ρ̂, is defined as the solution to the normal

equation
r∑

g=1

ng∑
i=1

x̄g,[i]
(
x̃g,i − ρ̂ ˜̄xg,[i]

)
= 0, (1.1)

where x̃g,i and ˜̄xg,[i] are deviations of, respectively, xg,i and x̄g,[i] from their within-urn

mean. A calculation given in the supplement to this paper shows that the normal equation

is biased. Moreover,

E0

(
r∑

g=1

ng∑
i=1

x̄g,[i] x̃g,i

)
= −

r∑
g=1

σ2
g , (1.2)

where the subscript on the expectations operator indicates that the expectation is taken

under the null of random assignment, and we have assumed that E0((xg,i − E0(xg,i))
2) =:

σ2
g does not vary across individuals. This urn-level homoskedasticity assumption can be

dispensed with and we do so below. Furthermore, it will turn out that, when peer groups

are mutually exclusive, the test derived under this homoskedasticity assumption is, in fact,

robust to heteroskedasticity.

Equation (1.2) implies that the within-group estimator is inconsistent under asymptotics

where the number of urns grows large but their size is held fixed. In the supplement we

show that (under the null)

plimr→∞ ρ̂ = −
limr→∞

1
r

∑r
g=1 σ

2
g

limr→∞
1
r

∑r
g=1 σ

2
g E0

(∑ng

i=1
1

mg(i)
− 1

ng

∑ng

i=1

∑ng

j=1
mg(i∩ j)

mg(i)mg(j)

) , (1.3)

where mg(i ∩ j) :=
∑ng

k=1(Ag)i,k (Ag)k,j is the number of peers that individuals i and j

have in common. The probability limit is always negative. All else equal its magnitude is

decreasing in urn sizes and increasing in the degree of overlap between peer groups. When
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peer groups do not overlap it is also increasing in the size of the peer groups. Furthermore,

in the special case where all urns are of size n and are partitioned into peer groups so that

each individual has m peers,

plimr→∞ ρ̂ = − m

n−m
,

which no longer depends on the urn variances. This last expression coincides with the one

reported in Proposition 1 of Caeyers and Fafchamps (2020).

The implication of the inconsistency is that the regression-based test will be biased

toward negative alternatives and that its size will tend to one as the number of urns grows

large.

1.2 A corrected test

The bias calculated in (1.2) is surprisingly simple and suggests a natural adjustment to the

proposal of Sacerdote (2001). Observe that an unbiased estimator of σ2
g (under the null) is

1

ng − 1

ng∑
i=1

xg,i x̃g,i.

Therefore, the re-centered covariance

qHO
r :=

r∑
g=1

ng∑
i=1

x̄g,[i] x̃g,i +
r∑

g=1

1

ng − 1

ng∑
i=1

xg,i x̃g,i =
r∑

g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)
will be exactly unbiased under random assignment. An estimator of the standard deviation

of qHO
r is a conventional standard error that clusters observations at the urn level. It equals

sHO
r :=

√√√√ r∑
g=1

(
ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))2

.

Hence, an adjusted test statistic is tHO
r := qHO

r /sHO
r . Note that the entire construction

of this statistic is based on calculations under the null. As such it is in the spirit of a

Lagrange-multiplier test.

Theorem 1 states the asymptotic behavior of the statistic tHO
r under the null and under

alternatives where E(qHO
r ) = br for a sequence of constants br = O(

√
r). In the theorem,

we let vg denote the variance of
∑ng

i=1 x̃g,i(x̄g,[i] + xg,i/(ng − 1)).
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Theorem 1. Let P(ng > 2) > 0. If maxg,i E(x8g,i) = O(1) and maxg,i(var(x2g,i))
−1 = O(1)

and P(vg > 0) > 0, then

tHO
r −

br
sHO
r

d→ N(0, 1),

as r →∞.

It is easy to verify that urns of size two would not contribute to the test statistic and

so can be dropped. Hence the need for the first condition in the theorem. The second

condition contains standard moment requirements. The third condition, finally, ensures

non-degeneracy of the test statistic. The prime case where this requirement fails is the

case where, in each urn, all individuals are peers of each other, i.e, in the complete-network

setting. Of course, in the context of testing random assignment, such a design is of little

interest.

An implication of the theorem is that, for any α ∈ (0, 1),

lim
r→∞

P0

(
tHO
r > z1−α

)
= α,

where zα is the α-quantile of the standard-normal distribution. One-sided and two-sided

tests then follow in the usual manner. The theorem also implies that the test is consistent

against any alternative for which br does not grow slower than
√
r. Several such deviations,

along with asymptotic power calculations, are considered in the supplement.

The probability limit in (1.3) is smaller (in magnitude) for urns of larger size. This

may suggest that in settings where peers are drawn from large urns, ignoring the bias issue

in the test of Sacerdote (2001) is inconsequential (Guryan, Kroft and Notowidigdo, 2009).

Such reasoning ignores the fact that the standard deviation of the within-group estimator,

too, is decreasing in urn sizes. The conclusion, then, in line with results in the panel data

literature (e.g., Hahn and Kuersteiner 2002), is that the bias will only be ignorable for

testing purposes when the size of the urns is substantially larger than the number of urns.

2 Connections to the literature

Guryan, Kroft and Notowidigdo (2009) Guryan, Kroft and Notowidigdo (2009)
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proposed to augment the within-group regression of Sacerdote (2001) by including the

leave-one-out average

1

ng − 1

∑
j 6=i

xg,j =
ng

ng − 1

(
1

ng

ng∑
j=1

xg,j −
xg,i
ng

)
=

ng
ng − 1

(
xg −

xg,i
ng

)
as an additional regressor. The within-group transformation sweeps out all terms that do

not vary within urns, and so the approach is equivalent to a within-group regression of

xg,i on x̄g,[i] and xg,i/(ng − 1). This highlights why variation in urn size is required for

this approach to be implementable. When ng does not vary across urns this regression will

yield a perfect fit that satisfies the null whether or not peer assignment is random. Guryan,

Kroft and Notowidigdo (2009) offer an intuition of why their strategy yields size control

and provide supporting simulations. However, a theoretical analysis of the test is, to our

knowledge, not available.

Calculations summarized in the supplement reveal that the approach of Guryan, Kroft

and Notowidigdo (2009) tests whether

r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

) (
1− δ

ng − 1

)
+ op(

√
r), (2.4)

is statistically different from zero. Here,

δ :=
limr→∞

1
r

∑r
g=1 σ

2
g

limr→∞
1
r

∑r
g=1 σ

2
g E0

(
1

ng−1

) ,
is the probability limit of the slope coefficient of a within-group regression of xg,i on

xg,i/(ng − 1), under the null. The summand in the leading term in (2.4) is equal to the

summand in qHO
r , up to a scale factor that varies at the urn level. This factor is bounded

and so, by virtue of Theorem 1, we conclude that the test will indeed exhibit correct size

in large samples.

The limited simulation evidence available suggests that the test of Guryan, Kroft and

Notowidigdo (2009) may suffer from low power; see Stevenson (2015). Because the approach

requires variation in urn sizes one may expect the test to be particularly underpowered when

such variation is limited (Stevenson 2015, Caeyers and Fafchamps 2020). While this is true,
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as evidenced by (2.4), low power also arises from a different source. Equation (2.4) is again

useful here. The weights 1− δ/(ng − 1) have mean zero, implying that they take on both

positive and negative values. Hence, bias terms for urns of different sizes will tend to cancel

each other out.

To see this it suffices to consider a design where urns are of size n̄1 with probability

(1 − pn) and of size n̄2 with probability pn, where n̄1 < n̄2. The non-centrality parameter

in the limit distribution of the test statistic of Guryan, Kroft and Notowidigdo (2009) can

be shown to equal

µ∗ :=
√
pn(1− pn)

b(n̄2)− b(n̄1)√
v(n̄1) pn + v(n̄2) (1− pn)

, (2.5)

where b(n) and v(n) are the bias and variance of
∑ng

i=1 x̃g,i (x̄g,[i] +xg,i/(ng−1)) conditional

on ng = n. This equation confirms that µ∗ → 0 as pn(1 − pn) → 0 and formalizes the

notion that the test will tend to have low power when variation in urn sizes is small. The

formula also shows that the test will have trivial asymptotic power when b(n̄1)− b(n̄2) = 0,

i.e., in designs where the bias contributions coming from the different urn sizes cancel each

other out. We next evaluate the severity of this issue through a series of theoretical power

calculations. The results are presented in the form of figures. The calculations underlying

them are collected in the supplement.

As a first exercise we consider designs where each of 25 urns contains six individuals

with probability pn and four individuals with probability 1− pn. Within urns of size four,

each individual is assigned one peer at random while in the larger urn peer groups are

of size three with probability pm and of size two with probability 1 − pm. Figure 1 plots

(theoretical) test power (as a function of the parameter ρ) against alternatives of the form

xg,i = ρx̄g,[i] + εg,i, εg,i ∼ independent (αg, σ
2). (2.6)

Figure 2, in turn, plots power against alternatives where peers are subject to a common

additive shock drawn from a distribution with variance σ2
η, independent of everything else.

Thus (conditional on an urn fixed effect) the variance of xg,i is equal to σ2
η + σ2 while the

covariance between characteristics of peers is σ2
η. Here, power is plotted as a function of

the ratio σ2
η/σ

2.
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Figure 1: Power against endogenous-effect alternatives
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Power for our test (dashed line) and for the test of Guryan, Kroft and Notowidigdo (2009) (dashed-dotted

line) in a design with two possible urns sizes (4 and 6) and two possible peer-group sizes (2 and 3).

pn := P(ng = 6) and pm := P(mg(i) = 2|ng = 6). A horizontal dashed line indicates the size of the test.

Plots are based on theoretical calculations and are for 25 urns.

The plots in Figures 1 and 2 are arranged so that pn increases when going down rows

and pm increases when moving through columns. Dashed curves refer to power of our test

while dashed-dotted curves represent power of the test of Guryan, Kroft and Notowidigdo

(2009). Both tests are two-sided at the 5% level, and we included a dashed horizontal line

in each plot to mark the size.

Figure 1 shows high power for our test across all designs. The test of Guryan, Kroft and
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Figure 2: Power against correlated-effect alternatives
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Power for our test (dashed line) and for the test of Guryan, Kroft and Notowidigdo (2009) (dashed-dotted

line) in a design with two possible urns sizes (4 and 6) and two possible peer-group sizes (2 and 3).

pn := P(ng = 6) and pm := P(mg(i) = 2|ng = 6). A horizontal dashed line indicates the size of the test.

Plots are based on theoretical calculations and are for 25 urns.

Notowidigdo (2009) is less powerful against all alternatives, and substantially so. There

is a reduction in its power when pn moves away from .50 (i.e., across rows); recall that

power converges to size as pn approaches either zero or one. For the values considered

here, this effect is small relative to the impact of changing pm, with power initially going

down considerably when pm moves from .25 to .50, and afterwards essentially flattening

out completely when pm = .75. This is a reflection of the numerator in µ∗ getting close
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to zero; the bias in urns of size four cancels out with the bias in urns of size six. As µ∗ is

multiplicative in ρ these changes are uniform on (−1, 1).

Figure 2 again shows our test to have high power. Power increases monotonically as

σ2
η/σ

2 grows and we move away from the null. While the same is true for the test of Guryan,

Kroft and Notowidigdo (2009) it may be observed that the increase in power trails behind

considerably. Indeed, whereas our test rejects with probability essentially equal to one as

soon as σ2
η/σ

2 is larger than 1/2, the test of Guryan, Kroft and Notowidigdo (2009) only

rejects in roughly one out of five cases.

Finally, we benchmark our test in a design used by Guryan, Kroft and Notowidigdo

(2009) and Stevenson (2015). Moreover, the former authors evaluated the size of their test

through a Monte Carlo experiment where, first, 100 urns are randomly allocated a size

ng ∈ {39, 42, 45, 48, 51} and, next, individuals within each urn are randomly allocated to

(non-overlapping) peer groups of size three. Stevenson (2015), in turn, simulated power

against the fixed correlated-effect alternative of σ2
η/σ

2 = .03. Here we extend this exercise

to all correlated-effect alternatives of the form σ2
η/σ

2 > 0 and also provide power against

endogenous-effect alternatives as defined in (2.6). Also, as before, we provide theoretical

power as opposed to simulated power. Figure 3 maintains the layout of the previous

figures. The results in the right-hand side plot confirm and generalize the low-power findings

observed by Stevenson (2015). The left-hand side plot reports similar difficulties relative

to endogenous-effect alternatives. Finally, we highlight the scale of the horizontal axis in

each of the plots to emphasize the dramatic difference in power between both approaches.

Caeyers and Fafchamps (2020) In designs where all urns are of the same size, n, and

each urn is partitioned into equally-sized groups of size m+ 1 (so that each individual has

m peers) we had that

plimr→∞ρ̂ = − m

n−m
=: ρ0.

This expression was equally obtained by Caeyers and Fafchamps (2020), albeit under a

full homoskedasticity assumption (see also Boozer and Cacciola 2001 and Angrist 2014 for

analogous calculations for the setting without fixed effects). To test for random assignment
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Figure 3: Power in the design of Stevenson (2015)
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Power against endogenous-effect (left plot) and correlated-effect (right plot) alternatives in the design of

Guryan, Kroft and Notowidigdo (2009) for our test (dashed line) and for the test of Guryan, Kroft and

Notowidigdo (2009) (dashed-dotted line). A horizontal dashed-dotted line indicates the size of the test.

Plots are based on theoretical calculations and are for 100 urns.

Caeyers and Fafchamps (2020) suggest to perform the test of Sacerdote (2001), only with

the dependent variable xg,i replaced by xg,i−ρ0 x̄g,[i]. Of course, this strategy is numerically

identical to constructing the bias-corrected (under the null) estimator ρ̂−ρ0, and performing

a standard two-sided t-test on it. Whichever implementation is chosen, it is important to

stress that this approach is valid only because, in this simple case, the probability limit,

ρ0, does not depend on any unknown parameters and so need not be estimated from the

data.

It is immediately clear that this idea can be generalized to our setup, making use of

the expression for the probability limit we obtained in (1.3).3 However, this probability

3After the current paper was circulated, Caeyers and Fafchamps (2020) included an extension of their

probability-limit calculation to allow for the size of urns and peer groups to be heterogenous. This is a

special case of (1.3). Moreover, under random sampling of urns and homoskedasticity our formula simplifies

to

− 1

E0

(∑ng

i=1
1

mg(i)
− 1
)

in this case. The statement in Caeyers and Fafchamps (2020, Proposition 2), in contrast, is considerably
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limit now has to be estimated. This implies that the usual standard errors reported with

a within-group regression are invalid and have to be adjusted in order for the test so

constructed to be size correct.

The chief difference between our proposal and the alternative possibility just described is

that we base our test directly on a recentered normal equation of the within-group estimator

and not on the within-group estimator itself. While the bias in the normal equation is very

simple and independent of the design, the probability limit of the within-urn estimator

depends in a complicated manner on the size and overlap between the different peer groups.

Stevenson (2015) Next we mention the suggestion of Stevenson (2015), which is based

on data splitting. Although its properties have not been established theoretically, the

subsampling scheme she proposed circumvents bias under the null, at least when peer

groups are mutually exclusive, and so should lead to size correct inference in this case

(under regularity conditions). Of course, the scheme is also computationally substantially

more demanding than the bias-adjustment proposal made here.

An alternative approach Finally, we remark that an alternative procedure to testing

for random assignment that has been employed (see, e.g., Wang 2009 and Chetty, Friedman,

Hilger, Saez, Schanzenbach, and Yagan 2011) is to first regress xg,i on a set of urn dummies

and a set of peer-group dummies, and next test that the latter set are all zero by means of

a standard F -test. Such a test, however, does not yield size control, even in the absence

of urn fixed effects (in which case, recall, an adjustment to the approach of Sacerdote

(2001) is not needed to yield asymptotic size control). Indeed, this testing problem is a

generalization of the one-way analysis of variance problem, and the usual F -statistic is

known to not deliver size-correct inference there; see Akritas and Papadatos (2004) and

more complicated and seems to implicitly assume that the frequency with which each combination of urn

and peer-group size appears in the sample is fixed and independent of the sample size. It is not obvious

that their expression can be reduced to the above equation even in this case. Their proof discusses only

the example where urns can be of one of two sizes. A proof of the general statement in their Proposition

2 is not provided.
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the references therin, for example.

3 Extensions

3.1 Heteroskedasticity

So far we have worked under an assumption of urn-level homoskedasticity. We now drop

this restriction and allow that σ2
g,i := E0((xg,i−E0(xg,i))

2) varies both between and within

urns in an arbitrary way.

First, calculations analogous to those that gave rise to (1.2) show that, now,

E0

(
r∑

g=1

ng∑
i=1

x̄g,[i] x̃g,i

)
= −

r∑
g=1

E0

(
1

ng

ng∑
i=1

1

mg(i)

ng∑
j=1

(Ag)i,j σ
2
g,j

)
. (3.7)

Hence, the contribution of each urn to the bias equals (minus) the expected within-urn

mean of peer-group averaged variances.

Appealing to a result of Hartley, Rao and Kiefer (1969), we show in the supplement

that an unbiased estimator of the bias in (3.7) is

−
r∑

g=1

ng∑
i=1

ωg,i xg,i x̃g,i, ωg,i :=
1

ng − 2

∑
i′∈[i]

1

mg(i′)
− 1

ng − 1

 ,

which is again well-defined for all urns of size ng > 2. Hence, a modification of qHO
r that is

robust to heteroskedasticity of arbitrary form is given by

qHC
r :=

r∑
g=1

ng∑
i=1

x̃g,i
(
x̄g,[i] + ωg,i xg,i

)
, (3.8)

which satisfies E0(q
HC
r ) = 0. It differs from qHO

r only in that the weight (ng−1)−1 is replaced

by ωg,i, which varies at the individual level. Construction of ωg,i is nonetheless immediate

from Ag.

Observe that, in the important special case where peer groups do not overlap we have

mg(i
′) = mg(i) for all i′ ∈ [i], and so

ωg,i =
1

ng − 1
.
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This is the weight we used to construct our test statistic under homoskedasticity. It thus

follows that tHO
r is robust to heteroskedasticity in this case.

The standard deviation of qHC
r can be estimated by

sHC
r :=

√√√√ r∑
g=1

(
ng∑
i=1

x̃g,i
(
x̄g,[i] + ωg,i xg,i

))2

.

A modified version of our test statistic that remains size correct under heteroskedasticity

of arbitrary form also when peer groups overlap is tHC
r := qHC

r /sHC
r . This statistic is

asymptotically normal under the same conditions as before. In the following theorem,

br := E(qHC
r ) = O(

√
r) and vg := E((

∑ng

i=1 x̃g,i (x̄g,[i] + ωg,i xg,i))
2).

Theorem 2. Let P(ng > 2) > 0. If maxg,i E(x8g,i) = O(1) and maxg,i(var(xg,i))
−1 = O(1)

and P(vg > 0) > 0, then

tHC
r −

br
sHC
r

d→ N(0, 1),

as r →∞.

3.2 Controlling for covariates

There may be situations where, in addition to urn fixed effects, it is desirable to control

for other variables that vary at the individual level, wg,i. This would be needed when

randomization is assumed to take place within urns only conditional on these variables.

A intuitive regression-based solution would be to first partial-out wg,i from xg,i and x̄g,[i]

and then proceed in constructing our test statistic as before. We next show that, under

regularity conditions, this approach is justified.

Let ẋg,i denote the residual from an ordinary least-squares regression of xg,i on urn

dummies and the vector of covariates wg,i. Then the modified test statistic takes the form

t̂HO
r :=

q̂HO
r

ŝHO
r

for

q̂HO
r :=

r∑
g=1

ng∑
i=1

ẋg,i

(
x̄g,[i] +

xg,i
ng − 1

)
, ŝHO

r :=

√√√√ r∑
g=1

(
ng∑
i=1

ẋg,i

(
x̄g,[i] +

xg,i
ng − 1

))2

.
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The statistic tHC
r can be modified in the same way.

To state conditions under which Theorem 1 generalizes to partialling-out covariates we

need

x̌g,i := xg,i −w′g,i

(
r∑

g=1

ng∑
i′=1

E(wg,i′w
′
g,i′)

)−1( r∑
g=1

ng∑
i′=1

E(wg,i′xg,i′)

)
.

This is the deviation of xg,i from its population linear projection on wg,i (and no fixed

effects).

The following theorem provides the result. Here, ‖·‖ refers to the Euclidean norm, br

is once more suitably re-defined to be the bias in q̂HO
r under Pitman drifts towards the

null hypothesis, and vg again denotes the variance of the term that urn g adds to the test

statistic.

Theorem 3. Let P(ng > 2) > 0. If maxg,i E(x̌8g,i) = O(1) and maxg,i(var(x̌2g,i))
−1 = O(1)

and P(vg > 0) > 0, then

t̂HO
r −

br
ŝHO
r

d→ N(0, 1),

as r →∞, provided that E(x̌g,i|wg,1, . . . ,wg,ng) = αg for urn-specific constants α1, . . . , αr,

that maxg,i E(‖wg,i‖4) = O(1) and that the matrix limr→ r
−1∑r

g=1 E(w̃g,i w̃
′
g,i) has maximal

rank.

The conditions in this result are intuitive. First, the moment conditions on xg,i in Theorem 1

are replaced by corresponding conditions on x̌g,i. Next, the mean-independence assumption

is a requirement of strict exogeneity on wg,i. Finally, the conditions on the covariates are

needed to ensure that the residuals from the auxiliary least-squares regression converge to

their population counterparts.

3.3 A multivariate version

Now suppose that we have a k-vector of characteristics xg,i. Under random assignment each

entry of xg,i is independent of each entry of x̄g,[i], the vector of peer-averaged characteristics.

A generalization of Sacerdote’s (2001) idea would be to run a multivariate regression of

xg,i on x̄g,[i] and urn fixed effects, and then look at the Wald statistic for the null that the
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matrix of regression slopes is equal to the zero matrix. Note that this test not only looks

whether a given characteristic is correlated with its average value across peers, but also

whether it is correlated with the peer average of each of the other characteristics. This

approach is equivalent to checking whether the numerator of the within-group estimator

(which is now a matrix),
r∑

g=1

x̃g,ix̄
′
g,[i],

is equal to the zero matrix. Suppose again that we have group-level homoskedasticity, i.e.,

E0(xg,ix
′
g,i)− E0(xg,i)E0(x

′
g,i) = Σg

for some k×k matrixΣg. The latter matrix need not be diagonal, so we allow for correlation

between the different characteristics of a given individual. In analogy to the univariate case,

E0

(
r∑

g=1

x̃g,ix̄
′
g,[i]

)
= −

r∑
g=1

Σg.

Furthermore, an unbiased estimator of Σg is (ng − 1)−1
∑ng

i=1 xg,ix̃
′
g,i, and so it follows that

r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)′
is an unbiased estimator of the zero matrix under the null. This motivates a test based on

the quadratic form

QHO
r :=

(
r∑

g=1

zg

)′( r∑
g=1

zgz
′
g

)−1( r∑
g=1

zg

)
,

where zg := vec(
∑ng

i=1 x̃g,i(x̄
′
g,[i] + x′g,i/(ng − 1))). Theorem 4 below generalizes Theorem 1

to the vector case. Here, we consider alternatives where E(
∑r

g=1 zg) = br for a sequence of

constant vectors br = O(
√
r).

Theorem 4. Let P(ng > 2) > 0. If maxg,i E(‖xg,i‖8) = O(1), the variance of xg,i is

non-singular, and limr→∞ r
−1∑r

g=1 E(zgz
′
g) is positive definite, then

QHO
r − b′r

(
r∑

g=1

zgz
′
g

)−1
br

d→ χ2
k2

as r →∞.
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4 Empirical illustration

Guryan, Kroft and Notowidigdo (2009) used the random assignment of golf players to

playing partners in tournaments to estimate peer effects. Their data span the 2002, 2005,

and 2006 seasons of the Professional Golfer’s Association (PGA) and cover 81 tournaments.

We refer to Guryan, Kroft and Notowidigdo (2009) for a detailed description of the data.

Here we only note the facts that are of direct relevance to our analysis. Players in the PGA

are, at any point in time, assigned to one of four categories (cat 1, cat 1a, cat 2, and cat 3).

At the start of each tournament, within these four categories, playing partners are assigned

to groups of three golfers. These (mutually exclusive) peer groups play together for the

first two rounds of the tournament. The analysis is limited to the first round. Conditional

on the set of players who enter a tournament, the assignment is random within categories.

Random assignment is tested by looking at the (corrected) within-group correlation between

a measure of a golfer’s ability and the average ability of his playing partners.

The chief measure of ability used to do this is an estimate of the number of strokes more

than 72 (i.e., above par) that a golfer typically takes in a round, on an average course, that

is used for PGA tournaments. The more negative this number the better the player. Table

1 contains descriptive statistics for this variable, stratified by the four player categories.

It shows that, broadly, average ability is higher in lower numbered categories, and that

there remains substantial variation in this measure even conditional on category. To get a

sense of urn sizes in these data the table also provides descriptive statistics of the number

of players by tournament-by-category. These are based on a total of 8,791 observations

instead of the total of 8,801 observations as 10 observations concern urns of a size less

than three; recall that such urns do not contain any information for our purposes. We also

included the same descriptive statistics for the weights (ng − 1)−1.

The test statistics for the default (i.e., uncorrected) regression-based test, our corrected

version, and the test where leave-me-out urn means are controlled for are collected in Table

2. The numbers in square brackets below are corresponding (two-sided) p-values. When

fully stratifying the data by tournament and category we observe that the default test
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Table 1: The PGA data

n obs mean std min max

ability (xg,i)

cat 1 3,205 -3.138 0.769 -5.159 1.440

cat 1a 3,436 -2.808 0.740 -4.326 6.732

cat 2 1,503 -2.857 0.894 -4.776 3.275

cat 3 657 -1.662 1.470 -4.776 6.315

peer ability (x̄g,[i])

cat 1 3,205 -3.132 0.599 -5.081 0.672

cat 1a 3,436 -2.811 0.591 -4.530 3.275

cat 2 1,503 -2.850 0.744 -4.776 3.275

cat 3 657 -1.690 1.270 -4.776 6.315

urn size (ng)

tourn by cat 8,791 39.292 16.869 3 83

weight ((ng − 1)−1)

tourn by cat 8,791 0.037 0.040 0.012 0.500

rejects the null of random assignment and would suggest there to be negative assortative

matching between players. The other two tests have large p-values, finding little evidence

to contradict the null.

Table 2: Results for the PGA data (test statistic [p-value])

stratification default corrected control

tourn by cat -3.957 -0.852 -1.209

[0.000] [0.394] [0.227]

We conclude this illustration by highlighting a caveat to the analysis of these data.

Most, if not all, professional golf players participate to multiple tournaments per year and

are also active for multiple years. Consequently, many players will appear in multiple urns,

albeit with a different value for their ability measure, as this is updated over time. This, of

course, induces dependence across urns which is in violation with our working assumption
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that urns are independent.

Conclusion

Random assignment of individuals to peer groups has proven to be a powerful tool for

credible identification of spillover effects. In non-experimental designs it needs to be argued

that assignment is ‘as good as’ random. This paper has presented a simple test to do so.

Its properties were derived and a comparison to alternative tests available in the literature

was made.
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