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Introduction

Exponential regression models are a workhorse tool in applied work, with applications

in the economics of health (Cameron, Trivedi, Milne and Piggott 1988; Deb and Trivedi

1997; Powell and Seabury 2018), innovation and investment (Hausman, Hall and Griliches

1984; Head and Reis 2008), international trade (Santos Silva and Tenreyro, 2006) and the

estimation of wage equations and production functions (Blackburn 2007; Sun, Henderson

and Kumbhakar 2011).

The pseudo-poisson maximum-likelihood estimator (Gouriéroux, Monfort and Trognon

1984a,b) has emerged as the default approach to the estimation of exponential-regression

models, following influential work by Santos Silva and Tenreyro (2006). This technique

is well known to enjoy certain robustness properties with respect to the inclusion of fixed

effects (Wooldridge 1999; Fernández-Val and Weidner 2016; Weidner and Zylkin 2021)

which are often included in applications to panel and network data to control for unobserved

confounding factors. The inclusion of fixed effects need not, however, resolve all endogeneity

concerns (Arzaghi and Henderson 2008 provide a discussion on this in their application,

for example).

Although instrumental-variable estimators for models with an exponential link function

have been proposed (Mullahy 1997; Windmeijer and Santos Silva 1997) and, indeed, have

found wide applicability (Tenreyro 2007, Werner 2015, and Cagé, Hervé and Mazoyer 2020

are just a few examples), they do not behave well in the presence of fixed effects (Jochmans,

2021). In this paper we consider exponential models for double-indexed n×m data where

fixed effects are included in each of the two dimensions of the data. In that case the

fixed-effect instrumental-variable estimators are consistent if both n,m → ∞ but only

have a proper limit distribution when n and m converge at the same rate, i.e., when n/m

converges to a finite non-zero constant. Under such rectangular-array asymptotics, the limit

distribution is incorrectly centered, though, implying that test statistics (or confidence sets)

constructed from it do not have correct size (or coverage).

We first derive the leading bias in the generalized method-of-moment (GMM) estimator
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of Mullahy (1997) and consider an analytical correction to the estimator that recenters the

limit distribution around zero, thereby salvaging inference procedures based on it. Through

extensive simulations we find that the correction removes a considerable amount of bias

from the point estimator. However, the presence of fixed effects also introduces bias in

the estimator of the (asymptotic) variance; similar observations have been made for the

pseudo-poisson estimator (Jochmans 2017; Pfaffermayr 2019), but the problem appears to

be somewhat more severe here. This bias is important even in quite large samples and,

together with the remaining bias in the point estimator, can lead to inferential procedures

with unsatisfactory performance.

We, therefore, next set out to construct a GMM estimator based on moment conditions

from which the fixed effects have been ‘differenced-out’. This turns out to be feasible in our

context by following arguments along the lines in Jochmans (2017). Separating inference

on the common parameters from the estimation of the fixed effects is useful as it leads to

estimators that are (consistent and) asymptotically unbiased as n,m→∞, independent of

their relative magnitude. Further, as the moment conditions underlying the estimator are

free of fixed effects, the associated estimator of the asymptotic variance matrix, in turn,

also does not suffer from incidental-parameter bias. In our simulations we find that this

procedure provides accurate estimates and reliable inference across all designs, uniformly

outperforming the (bias-corrected) fixed-effect estimator.

The gravity equation for international trade flows is an interesting application of our

techniques. The gravity equation is an exponential model linking bilateral trade flows to

various measures of trade costs. Here, the inclusion of importer and exporter fixed effects

has microeconomic foundations (Eaton and Kortum 2002; Anderson and van Wincoop

2003). A concern that arises when taking the gravity equation to the data is whether we

can plausibly treat policy variables, such as membership of a currency union or the decision

to participate in a preferential-trade agreement, as exogenous (see, e.g., Rose 2000, 2004

and Baier and Bergstrand 2004, 2007).

While the trade literature has long since recognized this problem, coming up with a

satisfactory solution has proven difficult. Early work using instrumental variables (e.g.,
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Rose 2000 and Barro and Tenreyro 2007) did not account for general-equilibrium effects

and ignored issues of nonlinearity that are now well-understood to be of great importance

(Santos Silva and Tenreyro, 2006). As an alternative, Egger, Larch, Staub and Winkelmann

(2011) set up a (nonlinear) simultaneous-equation model that incorporates the constraints

imposed by general equilibrium. This strategy requires the imposition of strong parametric

assumptions and is not robust to misspecification.

An additional concern is that the search for suitable instruments turns out to be quite

complicated. First, Head and Mayer (2014, p. 162) note that most variables that plausibly

cause trade agreements also appear in the trade equation itself. Second, Rose (2004, p. 110),

who experimented with measures of democracy and polity, and measures of freedom, civil

rights and political rights, found that this type of variable is only weakly correlated with

policy decisions.

As a reaction to these concerns, the profession has favored an approach that exploits

time-series variation in the form of panel data (Baier and Bergstrand 2007; Glick and

Rose 2016), including multi-way fixed effects to handle any endogeneity concerns (Weidner

and Zylkin 2021 introduce approaches to bias correction in this framework). Such an

approach may, however, not be satisfactory for the following three reasons. First, the

microfoundations for the gravity model apply to cross-sectional data and are questionable

bases for panel data (Head and Mayer, 2014, p. 189). Second, relying solely on time-series

variation rules out the possibility to estimate distance elasticities, border effects, and the

impact of other determinants of trade that are fixed across time. Third, if current policy

decisions react to existing trade flows, the policy variables are not (strictly) exogenous. This

renders the pseudo-poisson estimator inconsistent. The feedback issue seems a reasonable

concern. Indeed, the data suggest that countries take policy decisions (at least partially)

in response to the size of existing trade flows (Santos Silva and Tenreyro 2010, p. 59; Head

and Mayer 2014, p. 162).

We apply our differencing estimator to the trade data of Egger, Larch, Staub and

Winkelmann (2011). Here, the policy variable feared to be endogenous is the decision to

enter into a preferential-trade agreement. Egger, Larch, Staub and Winkelmann (2011)
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search for exogenous variation in such decisions by using indicators of a shared colonial

history and for whether or not the countries in question used to be part of the same

country. Using the same set of instruments we find similar results as they do (after a

correction to their implementation has been applied; see below). However, our results

show that this set of instruments is quite weak, implying wide confidence intervals around

the point estimates.

In our quest for alternative instruments we recognize that decisions on bilateral trade

policy are not made in isolation. We find high levels of transitivity in the formation of free

trade agreements in the data. Moreover, trade within a country pair is much more likely

to be subject to a free trade agreement if the respective countries have such an agreement

with one or more common third parties. Similar findings are reported in Egger and Larch

(2008) and Chen and Joshi (2010). This shows that the number of common free-trade

partners is a relevant instrument. The argument underlying the validity of this variable

as an instrument is that free trade agreements concluded with third-party countries affect

bilateral trade flows only through the importer and exporter effects. Such a mechanism

is fully consistent with the theory underlying the cross-sectional gravity model (Anderson

and van Wincoop 2003, Anderson and Yotov 2010). Hence, the validity of our instrument

is theoretically grounded. We also show how validity and relevance are implied by the

specification of Egger, Larch, Staub and Winkelmann (2011) (as well as generalizations

thereof in various directions). As we discuss in more detail below, validity can be more

difficult to justify if trade agreements are the outcome of a multilateral bargaining process.

Our new instrument allows to obtain more precise point estimates of the impact of

free-trade agreements. Across our different specification the partial effect (not taking into

account estimation uncertainty) ranges from 20% and 30%. Furthermore, in the data

used, we do not find statistical evidence that preferential-trade agreements are created

endogenously.
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1 Model specification and estimators

We have n × m panel data on a scalar outcome, Yi,j ≥ 0, a vector of regressors, X i,j,

and a vector of instruments, Zi,j. These data may come in the form of traditional panel

data or as data on the pairwise interaction between agents, i.e., as a graph. A workhorse

specification when dealing with non-negative outcomes variables is the exponential model

Yi,j = exp (Ai +Bj +X ′i,jϑ)Vi,j, (1.1)

where Ai and Bj are unobserved effects and Vi,j is a latent disturbance term. We are

interested in estimating the parameter vector ϑ under the mean-independence assumption

E(Vi,j|Z) = E(Vi,j) = 1, (1.2)

where we let Z be the collection of Zi′,j′ for all pairs (i′, j′). In doing so we will treat the

unobserved effects as fixed. Hence, here and later, all expectations implicitely condition

on them. To be clear, mean independence states that E(Vi,j|Z) = E(Vi,j). Due to the

presence of fixed effects, presuming this mean to be equal to unity amounts to an innocuous

normalization.

1.1 Fixed-effect estimator

The first estimator of ϑ that we consider is a fixed-effect version of the (generalized)

method-of-moments estimator of Mullahy (1997). This estimator is based on the set of

orthogonality conditions
n∑
i=1

m∑
j=1

E(Zi,j(Vi,j − 1)) = 0, (1.3)

and
m∑
j=1

E(Vi,j − 1) = 0,
n∑
i=1

E(Vi,j − 1) = 0. (1.4)

Estimator Equation (1.4) implies a (just-identified) system of estimating equations for

the fixed effects for a given value of the parameter vector ϑ. Solving these equations
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amounts to choosing estimates for the fixed effects such that the implied residuals, V̂i,j(ϑ)

(say), satisfy
m∑
j=1

(V̂i,j(ϑ)− 1) = 0,
n∑
i=1

(V̂i,j(ϑ)− 1) = 0,

that is, that their sample means across each of the two indices are equal to unity. Plugging

the residuals so obtained back into the empirical counterpart to Equation (1.3) then yields

a profiled estimating equation for ϑ. The implied GMM estimator of ϑmay then be written

as

arg min
ϑ

(
n∑
i=1

m∑
j=1

Zi,j(V̂i,j(ϑ)− 1)

)′
A

(
n∑
i=1

m∑
j=1

Zi,j(V̂i,j(ϑ)− 1)

)
,

for a weight matrix A. The usual arguments suggest using the inverse of (an estimator of)

the variance of the moment conditions as weight matrix. With (conditionally) uncorrelated

errors this variance equals

Ω :=
n∑
i=1

m∑
j=1

E(Qi,jQ
′
i,j(Vi,j − 1)2),

where Qi,j := Zi,j − 1/m
∑m

j′=1 E(Zi,j′) − 1/n
∑n

i′=1 E(Zi′,j) + 1/nm
∑n

i′=1

∑n
j′=1 E(Zi′,j′) is

the deviation of Zi,j from its population linear projection on the space spanned by the

fixed effects. In practice, this leads to a two-step estimator, using a preliminary (one-step)

estimator ϑ̂, say, computed using a known weight matrix, to estimate Ω in a first-step by

Ω̂ :=
n∑
i=1

m∑
j=1

Q̂i,jQ̂
′
i,j(V̂i,j(ϑ̂)− 1)2,

where Q̂i,j := Zi,j − 1/m
∑m

j′=1Zi,j′ − 1/n
∑n

i′=1Zi′,j + 1/nm
∑n

i′=1

∑n
j′=1Zi′,j′ , and then

solving the minimization problem again, now with A set to Ω̂
−1

, to arrive at the two-step

estimator, ˆ̂ϑ.1

1We remark the fact that the fixed-effect estimator does not reduce to the pseudo-poisson estimator

when regressors are instrumented by themselves. We refer to Mullahy (1997, Section III.B) and Windmeijer

and Santos Silva (1997, Section 2.1). Also, a fixed-effect version of the instrumental-variable estimator of

Windmeijer and Santos Silva (1997) would equally suffer from asymptotic bias in our context (see Jochmans

2021).
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Bias correction The need to estimate the fixed effects implies that the approach just

described is subject to the incidental-parameter problem of Neyman and Scott (1948).

Moreover, it will deliver an inconsistent estimator of ϑ, in general, unless both n andm grow

large. Calculations underlying this conclusion are provided elsewhere (Jochmans, 2021).

The estimator (when properly normalized) will have a well-behaved limit distribution under

such an asymptotic scheme provided that n/m converges to a positive and finite constant,

that is, that both dimensions grow at the same rate, although it will be incorrectly centered.

Consequently, to ensure that inference based on this distributional approximation is size

correct in large samples bias correction is necessary.

The problem arises from the bias that estimation of the fixed effects induces in the

profiled estimating equation for ϑ. Using similar arguments as Fernández-Val and Weidner

(2016) we find that, under the assumption of (conditionally) independent errors, the bias

is
n∑
i=1

m∑
j=1

E(Zi,j(V̂i,j(ϑ)− 1)) = β + o(n) + o(m),

for β := β1 + β2 with

β1 := −
n∑
i=1

(
m∑
j=1

E(Qi,jVi,j(Vi,j − 1))

m
− 1

2

m∑
j=1

E(Qi,jVi,j)

m

m∑
j=1

E((Vi,j − 1)2)

m

)
,

β2 := −
m∑
j=1

(
n∑
i=1

E(Qi,jVi,j(Vi,j − 1))

n
− 1

2

n∑
i=1

E(Qi,jVi,j)

n

n∑
i=1

E((Vi,j − 1)2)

n

)
,

which are of order n and m, respectively. The Jacobian of the profiled moment conditions

is

Υ :=
n∑
i=1

m∑
j=1

E(Vi,j(Zi,jX
′
i,j −Qi,jP

′
i,j)),

where P i,j is the residual of a population projection of X i,jVi,j on the space spanned by the

fixed effects. Then, as n,m→∞ at the same rate we get the distributional approximation

ˆ̂ϑ
a∼N

(
ϑ− (Υ ′Ω−1Υ )−1Υ ′Ω−1β, (Υ ′Ω−1Υ )−1

)
,

which is not centered at ϑ.
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A bias-corrected estimator based on the above findings is easily constructed. It takes

the form

ˆ̂ϑ+ ( ˆ̂Υ
′ ˆ̂Ω
−1 ˆ̂Υ )−1 ˆ̂Υ

′ ˆ̂Ω
−1 ˆ̂β,

where ˆ̂β is a plug-in estimator of β constructed using ˆ̂ϑ based on the formulae given above

and, similarly, ˆ̂Σ and ˆ̂Ω are similarly constructed sample analogs ofΣ andΩ, respectively.

For this corrected estimator,

ˆ̂ϑ+ ( ˆ̂Υ
′ ˆ̂Ω
−1 ˆ̂Υ )−1 ˆ̂Υ

′ ˆ̂Ω
−1 ˆ̂β

a∼N
(
ϑ, (Υ ′Ω−1Υ )−1

)
,

under rectangular-array asymptotics.

1.2 Differencing estimator

The second estimator of ϑ that we consider is an instrumental-variable generalization of

the differencing estimator put forth in Jochmans (2017). This approach is based on the

construction of moment conditions that are free of fixed effects. To see how this can be

done, let Wi,j := Yi,j/ exp(X ′i,jϑ) = exp(Ai +Bj)Vi,j. Because E(Vi,j|Z) = 1 we have that

E(Wi,j|Z) = exp(Ai +Bj).

Next, take two distinct data pairs (i, j) and (i′, j′) and observe that

E (Wi,jWi′,j′|Z) = exp(Ai + Ai′ +Bj +Bj′)

follows when Vi,j and Vi′,j′ are (conditionally) uncorrelated. Similarly, for the data pairs

(i, j′) and (i′, j),

E (Wi,j′ Wi′,j|Z) = exp(Ai + Ai′ +Bj +Bj′)

follows in the same way. Noting that the right-hand side of both equations is identical we

can take differences and iterate expectations to obtain the unconditional moment conditions

n∑
i=1

m∑
j=1

∑
i′ 6=i

∑
j′ 6=j

E (Zi,j(Wi,jWi′,j′ −Wi,j′ Wi′,j)) = 0, (1.5)
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which can be used in a GMM procedure to deliver an estimator that will be consistent and

asymptotically unbiased as the sample size grows large, irrespective of the relative growth

rate of n and m. In fact, one of the dimensions of the data could be held fixed. We will

not consider this situation further here, however, as, in that case, a simpler differencing

strategy, building on Chamberlain (1992), may be applied to one dimension of the data

only (Jochmans 2021).

Estimator With our moment conditions in hand the implied GMM estimator of ϑ takes

the form

arg min
ϑ

(
n∑
i=1

m∑
j=1

Zi,jW i,j(ϑ)

)′
A

(
n∑
i=1

m∑
j=1

Zi,jW i,j(ϑ)

)
,

where A is again a chosen weight matrix and we have introduced the notational shorthand

W i,j(ϑ) :=
∑
i′ 6=i

∑
j′ 6=j

(
Yi,j Yi′,j′

exp((X i,j +X i′,j′)′ϑ)
− Yi,j′ Yi′,j

exp((X i,j′ +X i′,j)′ϑ)

)
.

Let ϑ̌ denote the one-step GMM estimator obtained using a known weight matrix. Then,

again, the optimal two-step estimator under (conditionally) uncorrelated errors, ˇ̌ϑ, may

then be calculated using the inverse of

Σ̌ :=
n∑
i=1

m∑
j=1

Ši,jŠ
′
i,j,

as (an estimator of the) optimal weight matrix. Here,

Ši,j := 4
∑
i′ 6=i

∑
j′ 6=j

((Zi,j +Zi′,j′)− (Zi,j′ +Zi′,j))(W̌i,j W̌i′,j′ − W̌i,j′ W̌i′,j),

where W̌i,j := Yi,j/ exp(X ′i,jϑ̌). This construction arises because our empirical moment

conditions are not simple sample averages. Moreover, as is apparent from their definition,

W i,j(ϑ) and W i′,j′(ϑ) are not independent. The construction of Σ̌ accounts for this using

a projection argument (e.g., van der Vaart 2000); see Jochmans (2017, 2018) for related

applications of this device.

To state the large-sample distribution of ˇ̌ϑ, let

Ξ :=
∑
i′ 6=i

∑
j′ 6=j

∑
i′ 6=i

∑
j′ 6=j

E (Zi,j(Wi,jWi′,j′ (X i,j +X i′,j′)
′ −Wi,j′ Wi′,j (X i,j′ +X i′,j)

′))
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be the Jacobian of the moment conditions underlying the estimator and write Σ for the

population version of Σ̌. Then

ˇ̌ϑ
a∼N (ϑ, (Ξ ′Σ−1Ξ)−1)

as n,m → ∞. Recall that, in contrast with the approximation for the (bias-corrected)

fixed-effect estimator, here, no requirement on the relative growth rate of n and m is

needed.2

1.3 Numerical assessment

We report on the performance of the estimators introduced above in a series of simulation

experiments. Because models with an exponential link function are used in a wide range of

different scenarios we provide results for different types of data generating processes. They

cover count data, continuous outcomes, as well as mixed continuous/discrete outcomes

where there is a mass point at zero.

To maintain coherency across these different data generating processes we introduce

endogeneity into the model through a classical omitted-variable argument. We first generate

Zi,j ∼ N(1/2, 1) and Oi,j ∼ N(−1/2, 1) independently and next construct the single regressor

Xi,j = Zi,j +Oi,j.

We then generate the outcome Yi,j in such a way that

E(Yi,j|Xi,j, Oi,j) = exp(Xi,jϑ+Oi,j) =: µi,j.

Marginally on the variable Oi,j, we have E(Yi,j|Xi,j) = exp(Xi,jϑ) E(exp(Oi,j)|Xi,j), which

is not equal to exp(Xi,jϑ). We will report results for ϑ = 1. To generate the outcome

for the different scenarios we adopt the specifications in Jochmans (2017), as described in

more detail below.
2Our approach differences-out the fixed effects but estimates of the latter can, of course, still be obtained

if desired. One way in which this can be done is by applying the two-way pseudo-poisson estimator to

the transformed outcome W̌i,j . Under asymptotics where both n,m → ∞, the estimation noise that is

introduced by replacing ϑ by ϑ̂ is negligible in large samples, implying that the usual (robust) standard

errors are valid to perform inference on the incidental parameters.
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Data generation Count data are simulated from the poisson model and from three

negative-binomial models. In the poisson case the conditional mean and variance both

equal the arrival rate, µi,j. Note that this implies that the variance is a function of the

omitted regressor. The negative-binomial model is a mixture model over poisson models,

where the arrival rate has a Gamma distribution with positive shape and scale parameters

θ and pi,j = (1+µi,j/θ)
−1, respectively. In this case the variance exceeds the mean by θµ2

i,j.

By setting θ ∈ {1, 5, 10} we cover several degrees of overdispersion.

Non-negative continuous outcomes are generated through an exponential-regression

model with log-normal disturbances. More precisely, we generate outcomes as µi,j εi,j with

εi,j ∼ logN(−1/2 log(1 + σ2
i,j), log(1 + σ2

i,j))

for σ2
i,j ∈ {1, µ−1i,j , 1 + µ−1i,j , µ

−2
i,j }. These four cases yield different patterns of (conditional)

heteroskedasticity in the outcome. The first specification has homoskedastic errors. The

second specification has poisson-type errors, with the conditional mean and variance being

equal. The third specification gives an overinflated variance as in a negative-binomial

model with θ = 1. The fourth specification, corresponds to homoskedastic outcomes. Note,

though, that, even in this case, the conditional distribution will depend on the regressors

through higher-order moments

To incorporate a mass point at zero we generate outcome from a χ2 distribution with di,j

degrees of freedom, where di,j is drawn from a negative-binomial distribution with shape

parameter θ and scale parameter pi,j = (1 + µi,j/θ)
−1, where θ ∈ {5, 15}. Here, zero has

(conditional) probability mass (1− pi,j)θ.

Simulation results The above configurations yield ten data generating processes. For

each we simulated data sets of size (n,m) ∈ {(100, 25), (100, 50), (100, 100), (250, 250)},

and estimated ϑ by the (fixed-effect) pseudo-poisson estimator (PMLE), the fixed-effect

instrumental-variable estimator (FE-IV) and its bias-corrected version (BC), as well as the

estimator based on differencing out the fixed effects (DIFF). Here, PMLE is, of course,

inconsistent. It is included only to gauge the extent of the endogeneity problem. Tables 1
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and 2 provide the median, the interquartile range (IQR) and the empirical coverage of 95%

confidence intervals for each of the four estimators as obtained over 5, 000 Monte Carlo

replications.

PMLE is upward biased by roughly 50% in all designs. Its confidence intervals contain

the true parameter value in almost none of the replications. Hence, endogeneity is a relevant

issue here.

FE-IV, too, is upward biased in all designs. Contrary to PMLE, though, this is

incidental-parameter bias, not endogeneity bias; it is of the order n−1 + m−1. The bias

is less pronounced in some of the log-normal data generating processes. It is more severe in

the cases where the outcome is discrete or mixed continuous/discrete, accounting for 15%

to 30% of the point estimate when (n,m) = (100, 25) and 6% to 12% of the point estimate

when (n,m) = (100, 100), for example. Although it diminishes as we move to the designs

with larger (n,m), the improvement is insufficient to yield reliable inference. In these cases

the confidence intervals show substantial undercoverage (or, equivalently, the t-test heavily

overrejects under the null.) These observations are a manifestation of our results above

and show that bias correction is needed.

BC removes about half of the bias from FE-IV. This results in a large improvement

in coverage rates. Even with large (n,m) some undercoverage remains, though. When

(n,m) = (100, 100) it ranges from 5 to 10 percentage points in all but the three last designs.

This can be explained by the (downward) bias in the standard errors of the fixed-effect

estimator. Similar observations have been made for the pseudo-poisson estimator (under

exogeneity) by Jochmans (2017) and Pfaffermayr (2019), and by Weidner and Zylkin (2021)

in a panel data setting. In the last three designs the lingering presence of relatively more

bias further hurts the coverage rates, bringing them down to 60% to 70%, far below their

theoretical rate of 95%.

As DIFF is based on moment conditions that are free of incidental parameters it only

suffers from standard nonlinearity bias, which is (nm)−1 in our setting. The estimator

performs well for all configurations of (n,m). Its bias is uniformly (across designs) smaller

than that of all the other estimators while its variability is comparable to that of the other
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estimators. The absence of any substantial bias, together with the fact that the standard

errors do not suffer from incidental-parameter bias, explains why the DIFF estimator yields

confidence intervals with close to correct coverage for all data generating processes and for

all configurations of (n,m).

In conclusion our simulation results strongly point in favor of our differencing estimator.

Table 1: Simulation results

MEDIAN IQR COVERAGE (95%)

PMLE FE-IV BC DIFF PMLE FE-IV BC DIFF PMLE FE-IV BC DIFF

(n,m) = (100, 25)

poisson 1.495 1.153 1.061 1.003 0.060 0.103 0.092 0.073 0.001 0.224 0.719 0.945

Negbin (θ = 1) 1.479 1.184 1.088 1.006 0.102 0.129 0.114 0.086 0.000 0.220 0.633 0.949

Negbin (θ = 5) 1.489 1.159 1.066 1.004 0.069 0.105 0.094 0.074 0.001 0.213 0.705 0.946

Negbin (θ = 10) 1.492 1.157 1.064 1.004 0.067 0.105 0.093 0.073 0.001 0.219 0.711 0.951

Normal (1) 1.479 1.002 1.002 1.001 0.094 0.046 0.051 0.057 0.000 0.910 0.884 0.956

Normal (2) 1.495 1.055 1.027 1.004 0.061 0.053 0.056 0.058 0.002 0.599 0.803 0.946

Normal (3) 1.482 1.048 1.026 1.003 0.095 0.062 0.067 0.074 0.001 0.706 0.801 0.942

Normal (4) 1.494 1.123 1.074 1.023 0.062 0.069 0.072 0.088 0.001 0.204 0.543 0.887

Mixture (θ = 5) 1.493 1.307 1.190 1.015 0.077 0.160 0.148 0.111 0.001 0.047 0.284 0.929

Mixture (θ = 15) 1.495 1.300 1.182 1.012 0.072 0.153 0.142 0.102 0.001 0.046 0.302 0.935

(n,m) = (100, 50)

poisson 1.493 1.087 1.025 1.003 0.047 0.059 0.055 0.051 0.000 0.343 0.859 0.946

Negbin (θ = 1) 1.480 1.096 1.030 1.003 0.078 0.075 0.069 0.061 0.002 0.392 0.823 0.940

Negbin (θ = 5) 1.489 1.088 1.025 1.003 0.056 0.062 0.056 0.052 0.001 0.351 0.853 0.946

Negbin (θ = 10) 1.493 1.085 1.022 1.002 0.050 0.062 0.056 0.052 0.001 0.359 0.864 0.951

Normal (1) 1.480 1.001 1.001 1.001 0.069 0.034 0.037 0.039 0.002 0.922 0.897 0.947

Normal (2) 1.493 1.036 1.014 1.003 0.046 0.038 0.041 0.042 0.001 0.675 0.860 0.940

Normal (3) 1.481 1.036 1.017 1.003 0.073 0.046 0.049 0.052 0.002 0.724 0.832 0.951

Normal (4) 1.493 1.089 1.048 1.017 0.048 0.050 0.053 0.066 0.001 0.231 0.617 0.887

Mixture (θ = 5) 1.493 1.179 1.083 1.007 0.059 0.093 0.088 0.077 0.002 0.081 0.566 0.928

Mixture (θ = 15) 1.494 1.177 1.080 1.007 0.053 0.091 0.085 0.076 0.001 0.086 0.574 0.933

PMLE: pseudo-poisson estimator. FE-IV: fixed-effect instrumental-variable estimator. BC: bias-corrected

fixed-effect instrumental-variable estimator. DIFF: differencing estimator.
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Table 2: Simulation results (cont’d)

MEDIAN IQR COVERAGE (95%)

PMLE FE-IV BC DIFF PMLE FE-IV BC DIFF PMLE FE-IV BC DIFF

(n,m) = (100, 100)

poisson 1.494 1.054 1.011 1.001 0.036 0.040 0.038 0.036 0.000 0.428 0.901 0.953

Negbin (θ = 1) 1.481 1.060 1.014 1.001 0.062 0.049 0.047 0.044 0.001 0.458 0.879 0.948

Negbin (θ = 5) 1.490 1.055 1.012 1.002 0.042 0.042 0.040 0.037 0.000 0.435 0.904 0.954

Negbin (θ = 10) 1.493 1.054 1.010 1.001 0.040 0.041 0.038 0.036 0.000 0.444 0.895 0.950

Normal (1) 1.482 0.999 0.999 0.999 0.057 0.025 0.028 0.029 0.000 0.939 0.912 0.955

Normal (2) 1.494 1.026 1.009 1.002 0.036 0.028 0.030 0.031 0.000 0.680 0.879 0.941

Normal (3) 1.482 1.025 1.010 1.002 0.056 0.033 0.036 0.038 0.000 0.760 0.863 0.945

Normal (4) 1.495 1.069 1.035 1.014 0.036 0.037 0.040 0.050 0.000 0.208 0.626 0.875

Mixture (θ = 5) 1.491 1.122 1.046 1.006 0.045 0.059 0.057 0.055 0.000 0.088 0.688 0.935

Mixture (θ = 15) 1.494 1.121 1.045 1.005 0.041 0.057 0.055 0.053 0.000 0.083 0.689 0.939

(n,m) = (250, 250)

poisson 1.496 1.021 1.002 1.000 0.019 0.014 0.015 0.014 0.000 0.475 0.934 0.944

Negbin (θ = 1) 1.487 1.022 1.003 1.000 0.033 0.018 0.018 0.017 0.000 0.526 0.920 0.944

Negbin (θ = 5) 1.492 1.021 1.002 1.000 0.022 0.015 0.015 0.015 0.000 0.481 0.932 0.943

Negbin (θ = 10) 1.495 1.022 1.003 1.001 0.020 0.015 0.015 0.015 0.000 0.448 0.930 0.952

Normal (1) 1.488 1.000 1.000 1.000 0.027 0.010 0.011 0.011 0.000 0.943 0.926 0.954

Normal (2) 1.497 1.013 1.003 1.001 0.018 0.012 0.012 0.013 0.000 0.634 0.902 0.944

Normal (3) 1.488 1.012 1.003 1.001 0.030 0.014 0.015 0.016 0.000 0.762 0.907 0.949

Normal (4) 1.495 1.039 1.018 1.007 0.018 0.016 0.018 0.024 0.000 0.079 0.571 0.891

Mixture (θ = 5) 1.494 1.051 1.012 1.000 0.022 0.023 0.022 0.023 0.000 0.074 0.816 0.947

Mixture (θ = 15) 1.496 1.051 1.012 1.001 0.022 0.023 0.023 0.023 0.000 0.082 0.823 0.946

PMLE: pseudo-poisson estimator. FE-IV: fixed-effect instrumental-variable estimator. BC: bias-corrected

fixed-effect instrumental-variable estimator. DIFF: differencing estimator.
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2 Gravity equation for trade flows

The gravity equation has a long history in international trade. While its origins can be

traced back to Tinbergen (1962), the work of Eaton and Kortum (2002) and Anderson and

van Wincoop (2003) has provided the gravity model with micro foundations, establishing its

place as the workhorse method for the econometric analysis of bilateral trade patterns. The

recent literature has made great strides towards credible estimation of the gravity equation.

Including importer and exporter fixed effects to control for third-country effects through

multilateral-resistance terms (see Anderson 1979, Anderson and van Wincoop 2003, and

Redding and Venables 2004) has become standard. Further, the equation is now estimated

in levels rather than in log-linearized form to deal with such empirically-relevant issues

as the existence of zero trade flows between countries and conditional heteroskedasticity

(see Santos Silva and Tenreyro 2006). Consequently, the gravity equation is of the form in

(1.1), with Yi,j ≥ 0 a measure of trade intensity (typically, the volume of trade flows) from

exporter i to importer j and X i,j a set of covariates that capture trade costs between i and

j such as geographical distance, for example.

A difficult issue is how to handle the (potential) endogeneity of policy variables such

as the participation in preferential trade agreements (see, e.g., Baier and Bergstrand 2004,

2007, 2009, Frankel and Rose 1998, 2002, and Rose 2004). Although the literature has long

since recognized this problem, tackling it within a theory-consistent setting has proven

difficult. Early work on instrumental-variable estimation of the gravity equation was based

on log-linearized models of trade and did not account for general-equilibrium effects (e.g.,

Rose 2000 and Barro and Tenreyro 2007). Our approach can be used to address these

issues.

Like Egger, Larch, Staub and Winkelmann (2011) we focus on endogeneity of free-trade

agreements—a binary variable refered to as FTAi,j in the sequel—and we will use their

data, a cross section from the year 2005 on 126 countries. The conventional choices for

instrumental variables, in line with the discussion from above, yield estimators with large

standard errors (see below). Therefore, in the first subsection of this section, we first
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look for alternative instruments that have good predictive power for the establishment of

preferential-trade agreements. The data and empirical results are discussed in the next

subsection. A third subsection provides discussion.

2.1 Leveraging dependence in FTA decisions

The upper left plot of Figure 1 presents the network of preferential-trade agreements in

our data. Here, the nodes of the graph (blue dots) are the countries. An edge (black line)

is present between two countries if there is a free-trade agreement in place between them.

This network is undirected.

The network exhibits substantial heterogeneity in the degree, i.e., in the number of

countries with whom an agreement has been made. The upper right plot in Figure 1

contains the histogram of the degree. It is tri-modal.

The figure also reveals the existence of clusters of countries. A useful measure here is

the clustering coefficient (e.g., Newman 2010) which, in our context, is the probability that

trade between two countries is governed by a trade agreement if both countries have such

an agreement in place with a common third-party country. In our data this probability

is .784. On the other hand, the unconditional probability of a country pair’s trade being

subject to a preferential-trade agreement is only .223. This strong transitivity is in line with

observations made elsewhere; see Egger, Egger and Greenaway (2008), Egger and Larch

(2008), Chen and Joshi (2010), Baldwin and Jaimovich (2012), and Baier, Bergstrand and

Mariutto (2014).

Transitivity index The strong clustering shows that there is predictive content about

the trade-deal decision between a given pair of countries in their respective decisions to

strike such deals with other (third-party) countries. This motivates the construction of

instrumental variables for FTAi,j based on

C FTAi,j :=
∑
k

FTAi,k FTAk,j,
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Figure 1: Transitivity in FTA formation
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which is simply the number of countries with whom both Country i and Country j trade

on preferential terms. The lower left plot in Figure 1 summarizes this distribution via

its histogram. Note that the bins are of unequal length to be able to better differentiate

between the different values in the left tail. The lower right plot in the figure, in turn, gives

the distribution of the transitivity index (on the same set of bins) conditional on whether

(red) or not (blue) a free-trade agreement is in place. There is overlap in the support of

these distributions but the mass is distributed very differently. This is in line with the high

clustering coefficient reported on above.

The contagion index of Baldwin and Jaimovich (2012, Eq. (11)) for country pair (i, j)

is ∑
k

(
TRADEi,j∑
j′ TRADEi,j′

) (
TRADEk,j∑
i′ TRADEi′,j

)
FTAk,j.

It is related to but different from the transitivity index. Its construction is in the spirit of

the shift-share approach (see, e.g., Borusyak, Hull and Jaravel 2021). The contagion index

has been used by Martin, Mayer and Thoenig (2012) and Aichele, Felbermayr and Heiland

(2016) as an instrument for free-trade agreements (in a log-linearized model). Whether it

is suitable for this is questionable, however, as the weights in its contruction are functions

of trade flows which themselves, again, depend on FTA decisions.

The transitivity index exploits the network structure of international trade. As such

it has a connection to recent contributions such as Lawless (2009), Chaney (2014), and

Morales, Sheu and Zahler (2019). These recent models argue that firms tend to export to

countries similar to their prior destinations. While our approach is purely cross-sectional,

this ‘extended gravity’ channel is dynamic in nature, and calls for trade within country

pair (i, j) in a given time period to depend on their trade costs with third-party trading

partners (and, thus, in general also their trade-agreement arrangements) in the previous

period.

Validity The argument underlying the validity of the transitivity index as an instrument

is that preferential-trade agreements concluded with third-party countries affect bilateral

trade flows only through the importer and exporter effects. These effects absorb both all
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country-specific variables and multilateral resistance. Such a mechanism is fully consistent

with the theory underlying the cross-sectional gravity model (Anderson and van Wincoop

2003, Anderson and Yotov 2010), where multilateral-resistance terms capture any and all

third-party effects. Hence, the validity of our instrument is theoretically grounded. Indeed,

the original purpose of multilateral resistance in Anderson and van Wincoop (2003) was

precisely to let bilateral trade flows adjust to a change in trade-facilitating conditions with

third countries, such as the signing of a free trade agreement.

A potential threat to identification comes from interdependency or the presence of

strategic behavior in the formation of trade agreements. Such a situation is not captured

by a first-stage equation that is bilateral in nature, such as the one of Egger, Larch, Staub

and Winkelmann (2011), for example. Indeed, if policy decisions are the outcome of a

simultaneous game, then FTAi,j explicitely depends on FTAi′,j′ for all other country pairs

(i′, j′). An implication of this is that the transitivity index will violate our key exclusion

restriction.

A related difficulty is that some trade agreements are not bilateral in nature but, rather,

the outcome of a joint decision of multiple countries (for example, the European Union).

Again, in this case a first-stage equation that is bilateral in nature would be misspecified.

The precise way in which blocs negotiate trade agreements can reasonably be expected to

be heterogenous across blocs. Furthermore, different member countries may carry relatively

more or less weight in the final decision. This would imply, in turn, that the degree to which

the decision to establish preferential trade terms is endogenous will be heterogenous across

members of the bloc.

Cross-fitting Observe that, when endogeneity is indeed present, the transitivity index

of country pairs (i, j′) and (i′, j), C FTAi′,j and and C FTAi′,j, are correlated with Vi,j

in (1.1), as they involve FTAi,j in their construction. This violates the condition in (1.2)

underlying our results for the (bias-corrected) fixed-effect estimator of Mullahy (1997). On

the other hand, because the differencing estimator is based on interactions between two

exporters (i, i′) and two importers (j, j′) only, it is easy to see that (functions of) the
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transitivity index can be used as instrument in that context, provided that we construct

C FTAi,j as ∑
k 6=i′,j′

FTAi,k FTAk,j

when forming our moment condition (1.5). Note that this correction depends on (i′, j′).

The cross-fit correction ensures that the instrument does not involve free-trade decisions

of the countries in (i, j) with the countries in (i′, j′), which are used to difference-out the

fixed effects.

An example It is instructive to place the transitivity index within the framework of Baier

and Bergstrand (2004) and Egger, Larch, Staub and Winkelmann (2011). A stripped-down

(and symmetrized, as is the case in our data) version of their first-stage equation has the

form

FTAi,j = FTAj,i =

 1 if Ci + Cj ≥ Ui,j

0 if not
, (2.6)

where Ci is again a country-specific effect (capturing things as country size, capital-labour

ratio, and so on). The latter suffice to generate transitivity; no additional explanatory

variables are needed in the first-stage equation. Indeed, maintaining (for simplicity) the

assumption of Egger, Larch, Staub and Winkelmann (2011) that the Ui,j are independent

standard normal across pairs (i, j) we have

E(FTAi,k FTAi,j) = E(Φ(Ci + Ck)Φ(Ci + Cj))

6= E(Φ(Ci + Ck))E(Φ(Ci + Cj)) = E(FTAi,k)E(FTAi,j),

implying relevance of the transitivity index. Furthermore, as C FTAi,j is a function of Ci′

(for all i′) and of Ui,j′ ( j′ 6= j) and Ui′,j ( i′ 6= i) we can write

E(Vi,j|C FTAi,j) = E

E

Vi,j
∣∣∣∣∣∣ Ui,1, . . . , Ui,j−1, Ui,j+1, . . . , Ui,n

U1,j, . . . , Ui−1,j, Ui+1,j, . . . , Un,j
, C1, . . . , Cn

∣∣∣∣∣∣C FTAi,j


revealing that the independence of the Ui,j across country pairs (i, j) together with the

mean-independence of the Vi,j of the country-specific effects is more than enough to ensure
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that E(Vi,j|C FTAi,j) = E(Vi,j) = 1, thereby implying the validity of the transitivity index

as an instrumental variable.

These conclusions do not hinge on the precise form of the first-stage model used in this

illustration. The key feature that creates relevance is that there is dependence in a given

country’s trade policy with respect to different trading partners. This would appear to be

an ingredient of any reasonable specification. Validity requires that trade policy decisions

of other country pairs are (conditionally) independent. This is the case in conventional

bilateral specifications, such as the model of Egger, Larch, Staub and Winkelmann (2011).

As discussed above, this need not be the case in situations where trade policy decisions are

taken in a strategic manner, however.

Note also that the transitivity index remains a proper instrumental variable in a setting

where the bilateral decision process to engage in a preferential trade agreement would be

heterogeneous (in an unspecified way) across country pairs. The usual threshold-crossing

specification with an index that is additively-separable in (scalar) country effects is in no

way necessary.

2.2 Empirical results

We now re-analyse the data set of Egger, Larch, Staub and Winkelmann (2011). These data

constitute a cross-section of (directed) trade flows between 126 countries in the year 2005.

Table 3 provides definitions and some descriptive statistics of the variables included in the

data. The trade-cost variables are standard. Egger, Larch, Staub and Winkelmann (2011)

used three instrumental variables for the formation of trade agreements. These are binary

indicators of whether or not one of the countries in the pair was (at some point in time)

colonized by the other, whether or not they were colonized by the same (third) country,

and whether or not they have (at some point in time) been part of the same country.

The first two columns in Table 4 contain point estimates (and associated standard

errors) for the parameters of the gravity equation that are valid under the assumption

that trade agreements are formed exogenously. These are obtained using pseudo-poisson
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Table 3: Descriptive statistics

VARIABLE MEAN STD MIN MAX DESCRIPTION

TRADE 305.93 3,257.27 0.00 213,763.06 Nominal exports (in million US dollar)

FTA 0.22 0.42 0.00 1.00 Free trade agreement in place (by 2005)

DIST 8.20 0.83 3.25 9.42 Log of distance

BORD 0.02 0.14 0.00 1.00 Common border

LANG 0.14 0.35 0.00 1.00 Common language

COLONY 0.02 0.12 0.00 1.00 (Former) colonial relationship

COMCOL 0.08 0.27 0.00 1.00 (Former) common colonizer

CURCOL 0.01 0.09 0.00 1.00 Colonial relationship after 1945

SMCTRY 0.01 0.09 0.00 1.00 One country used to be part of the other

CONT 0.23 0.42 0.00 1.00 On the same continent

DURAB 29.40 29.22 0.00 100.00 Durability index of political regime

POLCOMP 8.90 19.94 0.00 98.00 Political competition index

AUTOC 7.99 18.95 0.00 1.00 Autocracy index

COUNTRIES 126

OBSERVATIONS 15,750
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(PMLE) and our differencing estimator (DIFF 1). For the latter this means that we

instrumented all covariates by themselves.

The next two columns in Table 4 correct for endogeneity by using the instrumental

variables of Egger, Larch, Staub and Winkelmann (2011). These are the three binary

variables COLONY, COMCOL, and SMCTRY. FIML refers to the two-step estimator of

Egger, Larch, Staub and Winkelmann (2011).3,4 DIFF 2 is our differencing estimator.

Here, the bias-corrected fixed-effect estimator introduced in the previous section is not

considered as it performed poorly in the simulations for designs where the outcome was

mixed continous/discrete; this is the relevant setting for trade flows.

The fifth and sixth column report instrumental-variable estimates based on the (cross-

fitted) transitivity index. DIFF 3 corresponds to the case where FTA is instrumented

for by the transitivity index itself. DIFF 4 achieves overidentification by using empirical

frequencies of the transitivity index as instruments. Here, we use as instruments indicator

variables that switch on for country pairs that have exactly zero, exactly one, exactly two,

between 3 and 5, between 6 and 10, between 11 and 20, or more than twenty preferential

trading partners in common. This is an approximation to the optimal instrument in this

3We remark that the presence of fixed effects in the first-stage specification of Egger, Larch, Staub

and Winkelmann (2011) introduces asymptotic bias in the two-step estimation procedure. The (estimated)

fixed effects and index coefficients from the probit model appear in the correction term that is applied

to the exponential regression model and introduce non-negligible bias in the pseudo-poisson estimator (as

well as in the probit estimator, of course). The problem would equally occur if the second stage would

be performed by least squares on a log-linearized gravity equation. See Fernández-Val and Vella (2011)

and Dhaene and Jochmans (2015) for further discussion and illustrations. In principle, these biases could

be corrected for via suitable extensions of the theory and methods proposed in Fernández-Val and Vella

(2011). Such results are not available at present and are not pursued here.
4The results for PMLE and FIML in Table 4 differ from those reported in Table 2 of Egger, Larch, Staub

and Winkelmann (2011). Inspection of their replication material, available through the publisher’s website,

reveals that two exporter fixed effects and two importer fixed effects are dropped in the computation of all

estimators. In our context (and provided that a constant term is included) it suffices to drop one of each

to deal with the fact that fixed effects can only be identified up to location; the results are invariant to

which two are chosen.
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context.

Of primary interest here is the coefficient on the policy variable, or its marginal effect.5

The latter is the relative change in the trade flow stemming from an exogenous change of

FTA status (from zero to one), i.e., (with ϑ the coefficient on FTA)

eϑ − 1.

The differencing estimators give the smallest marginal effect of free-trade agreements, with

an estimated 26% increase for DIFF 1, an estimated 17% increase for DIFF 2, an estimated

30% increase for DIFF 3, and an estimated 22% increase for DIFF 4. The corresponding

point estimate obtained by FIML is a 55% increase. This number, however, ignores the

asymptotic bias in the two-step estimator remarked on above.

DIFF 2 is very imprecisely estimated. This suggests that the explanatory power of the

instruments of Egger, Larch, Staub and Winkelmann (2011) is fairly limited. The smaller

standard error on the FIML estimate (which uses the same set of instruments) is an artifact

of the tightly parametrized specification that underlies it. In either case, the instruments

do pass a standard overidentification test. DIFF 3 and DIFF 4 estimate the marginal

effect with considerably more precision. Further, for DIFF 4, the Sargan overidentification

test has a p-value of .105, giving some confidence that the transitivity index is a valid

instrument in our data.

Use of the transitivity index as an instrumental variable yields much more precise

point estimates of the importance of trade liberalization than do the more traditional

instruments. On the other hand, the point estimates themselves are quite similar and,

indeed, not significantly different from the point estimate of DIFF 1, obtained under the

presumption that trade-agreement formation is, in fact, exogenous. Furthermore, a test of

exogeneity based on FIML, DIFF2, DIFF 3 or DIFF 4 does not allow a rejection of the

null of exogeneity at any of the conventional significance levels.

5Calculation of the full effect—i.e., taking into account general-equilibrium conditions—could equally

be done but the details of the calculation depend on the model at hand and, in particular, the structure

of the multilateral-resistance terms that are captured by the fixed effects.
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Table 4: Estimation results

EXOGENOUS FTA ENDOGENOUS FTA ENDOGENOUS FTA

PMLE DIFF 1 FIML DIFF 2 DIFF 3 DIFF 4

FTA 0.386 0.229 0.443 0.153 0.259 0.195

(0.071) (0.111) (0.168) (0.760) (0.162) (0.122)

DIST -0.618 -0.743 -0.608 -0.748 -0.736 -0.716

(0.035) (0.073) (0.042) (0.189) (0.073) (0.067)

BORD 0.649 0.809 0.651 0.787 0.803 0.8411

(0.060) (0.179) (0.061) (0.223) (0.177) (0.176)

LANG 0.213 0.243 0.218 0.254 0.243 0.3024

(0.063) (0.087) (0.060) (0.088) (0.087) (0.075)

CONT 0.285 0.185 0.272 0.221 0.178 0.2262

(0.065) (0.100) (0.074) (0.199) (0.111) (0.097)

DURAB -0.003 -0.001 -0.003 -0.001 -0.0001 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

POLCOMP 0.086 0.078 0.089 0.077 0.078 0.076

(0.020) (0.021) (0.021) (0.023) (0.021) (0.022)

AUTOC -0.070 -0.078 -0.073 -0.078 -0.079 -0.084

(0.029) (0.021) (0.030) (0.028) (0.020) (0.021)

CURCOL 0.396 0.352 0.384 0.314 0.355 0.383

(0.189) (0.228) (0.192) (0.218) (0.162) (0.217)

Sargan test (overidentification) — 2.308 — 10.592

p-value — [0.315] — [ 0.105]

Sargan test (exogeneity) 0.119 0.217 0.048 0.599

p-value [0.731] [0.642] [0.827] [0.439]

PMLE: pseudo-poisson estimator. DIFF 1: our differencing estimator instrumenting FTA by itself. FIML:

the estimator of Egger, Larch, Staub and Winkelmann (2011) where endogeneity of FTA is corrected for

by a parametric control function using COLONY, COMCOL, and SMCTRY as instruments. DIFF 2:

our differencing estimator with FTA instrumented for by COLONY, COMCOL, and SMCTRY. DIFF 3:

our differencing estimator instrumenting FTA by (cross-fitted) C FTA. DIFF 4: our differencing estimator

instrumenting FTA by frequencies of (cross-fitted) C FTA. Importer and exporter fixed effects are included

in all procedures.
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2.3 Discussion

Overall findings Using several different choices for instrumental variables within a

theory-consistent specification of the gravity equation we obtained estimates of the partial

effect of a free-trade agreement ranging between 20% and 30%. These numbers are in the

same range as the point estimates obtained from fixed-effect (pseudo-poisson) regressions

on (different) panel data sets; Larch, Wanner, Yotov and Zylkin (2019) report a partial

effect of 18%, for example. Using dissagregated panel data, Weidner and Zylkin (2021) find

heterogeneous effects by industry ranging broadly from 0% up to 20%. Across all industries

their partial-effect estimate is 9%.

We do not find strong statistical evidence of endogeneity in free-trade agreements. In

all specifications considered we cannot reject the null of exogeneity at any of the usual

significance levels. The point estimates obtained under the assumption of exogeneity, too,

are similar to the ones obtained through instrumental variables (when taking into account

standard errors).

Accounting for clustering The analysis above was performed under the assumption

that the errors are uncorrelated across country pairs. This excludes within-importer and

within-exporter dependence. This is a maintained assumption in the (theoretical) literature

on fixed-effect estimators. The statistical properties of such estimators in the presence of

strong clustering patterns of this type are unknown, at present. We note, though, that

our differencing estimator remains consistent if errors are dependent within importer and

withing exporter. Hence, the point estimates reported on above remain interpretable. The

standard errors, however, would no longer correctly reflect the estimation uncertainty. Of

course, clustering would normally be expected to increase standard errors so, if anything,

the confidence intervals around the impact of free-trade agreements on trade would be

expected to widen further.

Dealing with zero trade flows Our framework does not explicitely model zero trade

flows. Structural models of gravity like that of Anderson and van Wincoop (2003) do not
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naturally generate zeros. Such zeros are, however, observed in typical trade data sets; in the

data we use they make up for 37% of the observations. Our econometric specification is not

inconsistent with zeros and, indeed, the estimation procedures introduced here can handle

them (recall the simulation results for designs where the outcome had a mass point at zero,

for example, or see the discussion in Santos Silva and Tenreyro 2011). It could, however,

be fruitful to consider an explicit model for such zero trade flows. Theoretical models of

trade that generate zeros are introduced by Helpman, Melitz and Rubinstein (2008) and

Eaton, Kortum and Sotelo (2012), among others. A (statistical) two-part model, such as in

Egger, Larch, Staub and Winkelmann (2011), for example, would be one way to proceed.

It would allow to differentiate between the extensive and intensive margin of trade. How

to extend the estimation approaches constructed here to such a model is a question that is

left for future work.

Conclusion

In this paper we have introduced two estimators for two-way exponential-regression models

by instrumental variables. The first is a bias-corrected fixed-effect estimator. The second

estimator is a ‘differencing’ estimator that is based on moment conditions that are free of

fixed effects. Theoretical arguments, supported by an extensive set of simulation results,

favor the second technique.

We applied the differencing estimator to a cross-sectional gravity equation for trade flows

that features importer and exporter fixed effects. In this setting, the policy variable feared

to be endogenous is the decision to establish a preferential-trade agreement. Conventional

choices of instrumental variables gave very imprecisely estimated partial effects. As an

alternative we have constructed estimators where the decision on a free-trade agreement

between a pair of countries is instrumented for by (functions of) the same decision of the

countries in the pair with the other countries in the data. The relevance and validity

condition for such variables to be proper instruments can be supported by theoretical

specifications of the gravity equation. We have further illustrated how they are implied by
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common econometric specifications of how bilateral trade agreements are formed, and have

highlighted causes for potential violation of the exclusion restriction. The latter come from

considerations that are not well captured by bilateral specifications.

While the point estimates obtained using these new instruments are considerably more

precise, we do not find strong evidence in our data that free-trade agreements are formed

endogenously. Moreover, our point estimates (when taking into account estimation noise)

are similar to those obtained using methods that presume exogeneity. The literature has

(using various different methods) obtained partial-effect estimates that span a large range

(Baier, Yotov and Zylkin, 2019). It would, therefore, be interesting to see whether our

conclusions generalize to other data sets, covering different (or more) countries and other

time periods.
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