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We consider point estimation and inference based on modifications of
the profile likelihood in models for dyadic interactions between n agents
featuring agent-specific parameters. This setup covers the β-model of
network formation and generalizations thereof. The maximum-likelihood
estimator of such models has bias and standard deviation of O(n−1) and
so is asymptotically biased. Estimation based on modified likelihoods
leads to estimators that are asymptotically unbiased and likelihood-ratio
tests that exhibit correct size. We apply the modifications to versions of
the β-model for network formation and of the Bradley-Terry model for
paired comparisons.

1. Introduction. A growing literature has uncovered the importance

of interactions between agents through networks as drivers for economic

and social outcomes. A leading approach to statistical modelling of dyadic

interaction is through the inclusion of agent-specific parameters (see, e.g.,

Snijders 2011 for many references). A specific example that has received

substantial attention in the recent literature is the β-model for network

formation. There, agent fixed effects serve to capture degree heterogeneity in

link formation and the inclusion of dyad-level covariates reflects homophily.

Recent theoretical work on the β-model includes Chatterjee, Diaconis and

Sly [2011], Rinaldo, Petrovic and Fienberg [2013], Yan and Xu [2013], and

Graham [2017].

Estimation of fixed-effect models for dyadic data is non-standard as the

number of parameters grows with the sample size, and inference on common

parameters is plagued by asymptotic bias that needs to be corrected for.
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The bias problem comes from the presence of the agent-specific parameters

in the model, and is similar to the well-known incidental-parameter problem

(Neyman and Scott 1948) in models for panel data. Graham [2017] derives

the leading bias of the maximum-likelihood estimator in the β-model and

considers correcting for it.

The problem of inference in the presence of many nuisance parameters

has a long history. In this paper we look at generic estimation problems

for dyadic data and argue in favor of inference based on modifying the

likelihood function. In its most general form, the modified likelihood is a

bias-corrected version of the profile likelihood, that is, of the likelihood after

having profiled-out the nuisance parameters. The adjustment is both general

and simple in form, involving only the score and Hessian of the likelihood

with respect to the nuisance parameters. The adjustment term removes the

leading bias from the profile likelihood and leads to asymptotically-unbiased

inference and likelihood ratio statistics that are χ2-distributed under the

null. The form of the adjustment can be specialized by using the likelihood

structure (as in DiCiccio et al. 1996), in which case the modified likelihood

penalizes the profile likelihood for deviations from the information equality,

arising due to the estimation noise in the fixed effects.1

We work out the modifications to the profile likelihood in a linear version

of the β-model and in a linear version of the Bradley and Terry [1952] model

for paired comparisons. These simple illustrations give insight in how the

adjustments work. We next apply them to the β-model of Graham [2017],

and evaluate our approach using his simulation designs. We find that both

modifications dramatically improve on maximum likelihood in terms of bias

and mean squared error as well as reliability of statistical inference, and

that they are considerably more reliable than ex-post bias-correction of the

maximum-likelihood estimator.

2. Fixed-effect models for dyadic data. We consider data on dyadic

interactions between n agents. For each of n(n − 1)/2 distinct agent pairs

(i, j) with i < j we observe the random variable zij (which may be vector

1It can be further simplified when an information-orthogonal reparametrization exist,
as in Cox and Reid [1987] and Lancaster [2002]. However, as such reparametrizations do
not exist in general (see, e.g., Severini 2000) we do not consider such modifications further
here.
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valued). For example, we may observe an outcome yij generated by pair

(i, j) together with a vector of dyad characteristics xij , in which case we

have zij = (yij , x
′
ij)
′.

The density of zij (relative to some dominating measure) takes the form

f(zij ;ϑ, βi, βj),

where ϑ and β1, . . . , βn are unknown Euclidean parameters. Models of this

form are relevant in many areas. Examples include the analysis of network

formation ( Holland and Leinhardt 1981), the study of strategic behavior

among agents (Bajari, Hong and Nekipelov 2010) as well as matching and

sorting in bipartite networks (Abowd, Kramarz and Margolis 1999), and the

construction of rankings (Bradley and Terry 1952).

Our goal will be to perform inference on ϑ treating the βi as fixed effects.

As is well known, the maximum-likelihood estimator of ϑ generally performs

poorly when the number of nuisance parameters is large relative to the

sample size (Neyman and Scott 1948). We will consider modifications of the

maximum-likelihood method that yield asymptotically-unbiased estimators

that achieve the Cramér-Rao bound and likelihood-ratio statistics that yield

consistent tests that are size-correct in large samples.

3. Estimation and inference. The log-likelihood is

`(ϑ, β) =

n∑
i=1

∑
i<j

log f(zij ;ϑ, βi, βj),

where we let β = (β1, . . . , βn)′. For simplicity of exposition we ignore any

normalization that may be needed on β to achieve identification. When a

normalization of the form c(β) = 0 is needed, everything to follow goes

through on replacing `(ϑ, β) by the constrained likelihood `(ϑ, β) − λ c(β),

where λ denotes the Lagrange multiplier. We will give a detailed example

below.

It is useful to recall that the maximum-likelihood estimator of ϑ can be

expressed as

ϑ̂ = arg max
ϑ

ˆ̀(ϑ),

where ˆ̀(ϑ) = `(ϑ, β̂(ϑ)), with

β̂(ϑ) = arg max
β

`(ϑ, β),
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is the profile likelihood.

Inference based on the profile likelihood performs poorly, even in large

samples, because the dimension of β is n, which grows with the sample size

n(n − 1)/2. Quite generally, estimating the n parameters βi along with ϑ

will imply that

E(ϑ̂− ϑ) = O(n−1).

As E((ϑ̂ − ϑ)2) = O(n−2), bias and standard deviation are of the same

order of magnitude, and the maximum-likelihood estimator is asymptotically

biased.

3.1. Modified profile likelihood. Estimation and inference in the presence

of (many) nuisance parameters has a long history. Seminal contributions of

Barndorff-Nielsen [1983] and Cox and Reid [1987] contains modifications

to the profile likelihood that lead to superior inference. More recent work

includes DiCiccio et al. [1996] and Severini [1998]. Modified likelihoods have

been found to solve the incidental-parameter problem in models for panel

data under so-called rectangular-array asymptotics (as defined in Li, Lindsay

and Waterman 2003); see Sartori [2003]. Here we wish to argue that they

can equally be used to yield asymptotically-valid inference in the current

context.

In its simplest form, modified likelihoods can be understood as yielding

a superior approximation to the target likelihood

`(ϑ) = `(ϑ, β(ϑ)), β(ϑ) = arg max
β

E(`(ϑ, β)).

Moreover, the profile likelihood is the sample counterpart to this infeasible

likelihood. Replacing β(ϑ) with β̂(ϑ) introduces bias that leads to invalid

inference.

Under regularity conditions similar to those in, say Sartori [2003], we have

β̂(ϑ)− β(ϑ) = Σ(ϑ)−1V (ϑ) +Op(n
−1),

where we introduce

V (ϑ) =
∂`(ϑ, β)

∂β

∣∣∣∣
β=β(ϑ)

, Σ(ϑ) = − E
(
∂2`(ϑ, β)

∂β∂β′

)∣∣∣∣
β=β(ϑ)

.
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An expansion of the profile likelihood around β(ϑ) yields

ˆ̀(ϑ)− `(ϑ) = (β̂(ϑ)− β(ϑ))′V (ϑ)

− 1

2
(β̂(ϑ)− β(ϑ))′Σ(ϑ)(β̂(ϑ)− β(ϑ)) +Op(n

−1/2).

Combining the two expansions and taking expectations then shows that the

bias of the profile likelihood is of the form

E(ˆ̀(ϑ)− `(ϑ)) =
1

2
trace(Σ(ϑ)−1Ω(ϑ)) +O(n−1/2)

for

Ω(ϑ) = E[V (ϑ)V (ϑ)′],

the variance of V (ϑ).

A modified likelihood then is

˙̀(ϑ) = ˆ̀(ϑ)− 1

2
trace(Σ̂(ϑ)−1Ω̂(ϑ)),

where we define the plug-in estimators

Σ̂(ϑ) = Σ̂(ϑ, β̂(ϑ)), Ω̂(ϑ) = Ω̂(ϑ, β̂(ϑ)),

for matrices

−(Σ̂(ϑ, β))i,j =



∑
i<k

∂2 log f(zik;ϑ,βi,βk)
∂β2

i
+
∑

i>k
∂2 log f(zki;ϑ,βk,βi)

∂β2
i

if i = j

∂2 log f(zij ;ϑ,βi,βj)
∂βi∂βj

if i < j

∂2 log f(zji;ϑ,βj ,βi)
∂βi∂βj

if i > j

and

(Ω̂(ϑ, β))i,j =



∑
i<k

(
∂ log f(zik;ϑ,βi,βk)

∂βi

)2
+
∑

i>k

(
∂ log f(zki;ϑ,βk,βi)

∂βi

)2
if i = j(

∂ log f(zij ;ϑ,βi,βj)
∂βi

)2
if i < j(

∂ log f(zji;ϑ,βj ,βi)
∂βi

)2
if i > j

In large samples, this modification removes the leading bias from the profile

likelihood. Consequently, in large samples, the likelihood-ratio statistic has

correct size and

ϑ̇ = arg max
ϑ

˙̀(ϑ),
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will have bias o(n−1). Furthermore, under usual regularity conditions, we

have the limit result

(ϑ̇− ϑ)
a∼ N

(
0,

I(ϑ)−1

n(n− 1)/2

)
as n→∞, where we let

I(ϑ) = lim
n→∞

E
(
−∂

2`(ϑ)

∂ϑ∂ϑ′

)/(
n(n− 1)

2

)
be the Fisher information for ϑ.

The only point at which the likelihood setting has been used so far is

in the statement of the limit distribution of ϑ̇ − ϑ, where the expression

for the asymptotic variance exploits the information equality. Bias-corrected

estimation—using the same formula for the bias as before—thus carries over

to more general extremum-type estimation problems; the only change being

that, now, the asymptotic variance is I(ϑ)−1Ω(ϑ) I(ϑ)−1.

Alternatively, following the arguments in Arellano and Hahn [2007] we

can exploit the likelihood structure to get

1

2
trace(Σ̂(ϑ)−1Ω̂(ϑ)) = −1

2
log(det Σ̂(ϑ)) +

1

2
log(det Ω̂(ϑ)) +O(n−1),

which validates the alternative modified likelihood

῭(ϑ) = ˆ̀(ϑ) +
1

2
log(det Σ̂(ϑ))− 1

2
log(det Ω̂(ϑ));

see DiCiccio et al. [1996]. Its maximizer, say ϑ̈, satisfies the same asymptotic

properties as ϑ̇.

3.2. Illustration: A linear β-model. Consider the following extension of

the classic many normal means problem of Neyman and Scott [1948]. Data

are generated as

zij ∼ N(βi + βj , ϑ),

and are independent across dyads. The likelihood function for all parameters

(ignoring constants) is

`(ϑ, β) = −1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − βi − βj)2

ϑ
.
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Its first two derivatives with respect to the βi are

∂`(ϑ, β)

∂βi
=
∑
i<j

zij − βi − βj
ϑ

+
∑
i>j

zji − βj − βi
ϑ

and
∂2`(ϑ, β)

∂βi∂βj
=

{
− (n−1)

ϑ if i = j

− 1
ϑ if i 6= j

.

Let z̃i = (n−2)−1
∑

i<j zij +(n−2)−1
∑

i>j zji and z = (2(n−1)−1
∑n

i=1 z̃i.

Solving for the maximum-likelihood estimator of βi gives β̂i = z̃i− z for any

ϑ. The profile likelihood is therefore

ˆ̀(ϑ) = −n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
,

and its maximizer is

ϑ̂ =
2

n(n− 1)

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2.

Some tedious but straightforward calculations yield

E(ϑ̂− ϑ) = − 2

n− 1
ϑ, var(ϑ̂) =

n− 3

n− 1

2ϑ2

n(n− 1)/2
,

which confirms that the maximum-likelihood estimator of ϑ suffers from

asymptotic bias. Moreover,√
n(n− 1)

2
(ϑ̂− ϑ)

d→ N
(
−
√

2ϑ, (
√

2ϑ)2
)
,

as n→∞.

To set up the modified likelihood, first note that

(Σ̂(ϑ))i,j =

{
n−1
ϑ if i = j
1
ϑ if i 6= j

, (Σ̂(ϑ)−1)i,j =

{
ϑ
2

2n−3
(n−1)(n−2) if i = j

−ϑ
2

1
(n−1)(n−2) if i 6= j

,

and that

(Ω̂(ϑ))i,j =


∑

i<k
(zik−(z̃i−z)−(z̃k−z))2

ϑ2
+
∑

i>k
(zki−(z̃k−z)−(z̃i−z))2

ϑ2
if i = j

(zij−(z̃i−z)−(z̃j−z))2
ϑ2

if i < j

(zji−(z̃j−z)−(z̃i−z))2
ϑ2

if i > j

.
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It is then easily seen that

1

2
trace(Σ̂(ϑ)−1Ω̂(ϑ)) =

1

2

2

n− 1

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
.

From this we obtain

˙̀(ϑ) = −n(n− 1)

2
log ϑ−

(
1 +

2

n− 1

)
1

2

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
,

and its maximizer

ϑ̇ =
n+ 1

n− 1
ϑ̂ = ϑ̂+

2

n− 1
ϑ̂.

Clearly, this estimator removes the leading bias from the maximum-likelihood

estimator. Moreover,

E(ϑ̇− ϑ) = −
(

2

n− 1

)2

ϑ, var(ϑ̇) =
n(n(n− 1)− 5)

(n− 1)3
2ϑ2

n(n− 1)/2
,

which shows that the remaining bias in the point estimator is small relative

to its standard deviation.

As an alternative correction, we may exploit the likelihood structure to

adjust the profile likelihood by the term

−1

2
log(det Σ̂(ϑ)) +

1

2
log(det Ω̂(ϑ)) =

n

2
log ϑ+ c,

where c is a constant that does not depend on ϑ. This yields the modification

῭(ϑ) = −n(n− 3)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − (z̃i − z)− (z̃j − z))2

ϑ
,

whose maximizer satisfies

E(ϑ̈− ϑ) = 0, var(ϑ̈) =
2ϑ2

n(n− 3)/2
.

This estimator is exactly unbiased.

To give an idea of the magnitude of the bias in this problem, Table 1

contains the bias and standard deviation of the estimators ϑ̂, ϑ̇, and ϑ̈ for

various sample sizes n and variance parameter fixed to ϑ = 1. These results

are invariant to the value of the βi and can be interpreted as relative bias

for general values of ϑ.
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Table 1
Many normal means

n ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈
bias standard deviation

5 -0.5000 -0.2500 0.0000 0.3162 0.4743 0.6325
10 -0.2222 -0.0494 0.0000 0.1859 0.2272 0.2390
15 -0.1429 -0.0204 0.0000 0.1278 0.1460 0.1491
20 -0.1053 -0.0111 0.0000 0.0970 0.1073 0.1085
25 -0.0833 -0.0069 0.0000 0.0782 0.0847 0.0853
50 -0.0408 -0.0017 0.0000 0.0396 0.0412 0.0413
75 -0.0270 -0.0007 0.0000 0.0265 0.0272 0.0272

100 -0.0202 -0.0004 0.0000 0.0199 0.0203 0.0203

3.3. Illustration: A linear Bradley-Terry model. As an alternative to the

Neyman and Scott [1948] model with complementarities, now suppose that

zij ∼ N(βi − βj , ϑ)

independently across dyads. This model is overparametrized as, clearly, the

mean of the βi is not identified. A common normalization in this type of

model is
∑n

i=1 βi = 0 (Simons and Yao 1999), and we will maintain it here.

The constrained likelihood is

−1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − βi + βj)
2

ϑ
+ λ

n∑
i=1

βi,

where λ is the Lagrange multiplier for our normalization constraint. The

first-order condition for the constrained problem for βi for a given ϑ equals∑
i<j zij −

∑
i>j zji

ϑ
− n

ϑ
βi = 0.

This gives

β̂i =

∑
i<j zij −

∑
i>j zji

n
= z̃i (say)

for all i and any ϑ. Observe that the sign of β̂i is driven by the comparison of

the magnitudes of
∑

i<j zij and
∑

i>j zji. Also note that
∑n

i=1 β̂i = 0 holds.

We therefore have

ˆ̀(ϑ) = −1

2

n(n− 1)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2

ϑ
,
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and with it, the maximum-likelihood estimator

ϑ̂ =
2

n(n− 1)

n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2.

A calculation shows that E(ϑ̂− ϑ) = −2n−1ϑ.

It is immediate that

Σ̂(ϑ) = diag
(n
ϑ

)
, Σ̂(ϑ)−1 = diag

(
ϑ

n

)
,

and that

(Ω̂(ϑ))i,j =


∑

i<k
(zik−z̃i+z̃k)2

ϑ2
+
∑

i>k
(zki−z̃k+z̃i)2

ϑ2
if i = j

(zij−z̃i+z̃j)2
ϑ2

if i < j

(zji−z̃j+z̃i)2
ϑ2

if i > j

.

Therefore,

˙̀(ϑ) = −1

2

n(n− 1)

2
log ϑ− 1

2

(
1 +

2

n

) n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2

ϑ
,

῭(ϑ) = −1

2

n(n− 3)

2
log ϑ− 1

2

n∑
i=1

∑
i<j

(zij − z̃i + z̃j)
2

ϑ
.

The corresponding estimators are

ϑ̇ =

(
1 +

2

n

)
ϑ̂, ϑ̈ =

n− 1

n− 3
ϑ̂ =

(
1 +

2

n− 3

)
ϑ̂.

Both remove the leading bias from the maximum-likelihood estimator, as

E(ϑ̇− ϑ) = − 4

n2
ϑ = O(n−2), E(ϑ̈− ϑ) =

2

n(n− 3)
ϑ = O(n−2),

but, in this case, neither is exactly unbiased. The first estimator has bias

that is strictly negative (for any finite n). The second estimator overcorrects

and has strictly positive bias. The second-order bias is monotone in n. We

have
4

n2
ϑ >

2

n(n− 3)
ϑ
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for all n > 7. As n→∞,√
n(n− 1)

2
(ϑ̇− ϑ)

d→ N(0, 2ϑ2),

and ‖ϑ̈− ϑ̇‖ = op(n
−1); that is, the two modifications to the likelihood yield

asymptotically-equivalent estimators.

4. Application to the β-model. The β-model of network formation

(Chatterjee, Diaconis and Sly 2011; Graham 2017) models Bernoulli outcome

variables as having success probability

P(yij = 1|xij ;ϑ, βi, βj) = F (βi + βj + x′ijϑ),

where F (a) = (1+e−a)−1 is the logit link function. Graham [2017] calculates

the leading bias in the maximum-likelihood estimator of ϑ and considers the

effectiveness of subtracting a plug-in estimator of it from the maximum-

likelihood estimator. We will compare this approach to estimation based on

the modified likelihood in numerical experiments below.

4.1. Modified profile likelihood. The likelihood function, conditional on

the regressors, is

`(ϑ, β) =
n∑
i=1

∑
i<j

yij log (Fij(ϑ, βi, βj)) + (1− yij) log (1− Fij(ϑ, βi, βj)),

where we let Fij(ϑ, βi, βj) = F (βi + βj + x′ijϑ).

For a given value of ϑ, the score for the incidental parameters has elements

∂`(ϑ, β)

∂βi
=
∑
i<j

yij − Fij(ϑ, βi, βj) +
∑
i>j

yji − Fji(ϑ, βj , βi)

while the n× n Hessian matrix has (i, j)th-entry equal to

∂2`(ϑ, β)

∂βi∂βj
=


−
∑

i<k fik(ϑ, βi, βk)−
∑

i>k fki(ϑ, βk, βi) if i = j

−fij(ϑ, βi, βj) if i < j

−fji(ϑ, βj , βi) if i > j

,

for fij(ϑ, βi, βj) = Fij(ϑ, βi, βj) (1−Fij(ϑ, βi, βj)). The maximum-likelihood

estimator of the βi for a given value of ϑ is not available in closed form



12

and needs to be computed numerically. Because the likelihood is globally

concave, Newton’s algorithm is well-suited for the task, and will typically

find the solution in two or three iterations.

Introduce the shorthands

F̂ij(ϑ) = Fij(ϑ, β̂i(ϑ), β̂j(ϑ)), f̂ij(ϑ) = fij(ϑ, β̂i(ϑ), β̂j(ϑ)).

The profile likelihood is

ˆ̀(ϑ) =
n∑
i=1

∑
i<j

yij log (F̂ij(ϑ)) + (1− yij) log (1− F̂ij(ϑ)),

and a modified likelihood is readily constructed by appropriately combining

the matrices Σ̂(ϑ) and Ω̂(ϑ).

4.2. Simulation experiments. We next present the results from a Monte

Carlo experiment. The designs are borrowed from Graham [2017]. All designs

are of the following form. Let ui ∈ {−1, 1} so that P(ui = 1) = 1
2 . We

generate the dyad covariate as

xij = ui uj ,

and the fixed effects as

βi = µ+ γ1
1 + ui

2
+ γ2

1− ui
2

+ vi,

where vi ∼ Beta(λ1, λ2). We set µ = −λ1(λ1 + λ2)
−1, so that µ + vi has

mean zero, and will consider several choices for the parameters (γ1, γ2) and

(λ1, λ2). The parameter choices are summarized in Table 2. In the first four

designs (A1–A4), the βi are drawn independently of xij from symmetric

Beta distributions. In the next four designs (B1–B4) the βi are generated

from skewed distributions that depend on ui (and thus correlate with the

regressor xij). For both the designs labelled A and B, the average number

of observed links per agent goes down as we move from the first design (A1

and B1) to the fourth design (A4 and B4). The average number of links

decreases from about 50% to 12%. This is clear from the second block of

Table 2, which contains the average, minimum, and maximum number of

links per agent (in percentages).
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Table 2
Simulation designs for the β-model

Design γ1 γ2 λ1 λ2 degree (%)
mean min max

A1 0 0 1 1 50 32 67
A2 -0.25 -0.25 1 1 40 24 57
A3 -0.75 -0.75 1 1 23 10 38
A4 -1.25 -1.25 1 1 12 3 22

B1 0 0.50 0.25 0.75 60 40 78
B2 -0.50 0 0.25 0.75 40 21 62
B3 -1.00 -0.50 0.25 0.75 24 8 44
B4 -1.50 -1.00 0.25 0.75 12 2 28

We simulate 10, 000 data sets for each design for n ∈ {25, 50, 75, 100} and

ϑ = 1. Because the results across designs are qualitatively very similar, we

present the full set of results only for Design A1 (Table 3). Tables 4 and 5

provide the results for n ∈ {50, 100} for all designs. Each table contains the

mean and median bias of ϑ, ϑ̇, and ϑ̈, along with their standard deviation

and their interquartile range (both across the Monte Carlo replications).

The tables also provide the empirical size of the likelihood ratio test for the

null that ϑ = 1 for theoretical size α ∈ {.05, .10}. Inference results based on

the Wald statistic, using a plug-in estimator of I(ϑ), are very similar and

not reported for brevity.

Because the results for n = 100 can be compared (up to Monte Carlo

error) to the numerical results collected in Graham [2017, Table 2], Table

5 contains two additional columns in which we reproduce the results for

his analytically bias-corrected maximum-likelihood estimator (ϑ̃) and his

‘tetrad logit’ estimator (ϑ̌). The latter is based on moment conditions that

are free of βi using a sufficiency argument. Bias correcting ϑ̂ does not salvage

the likelihood ratio statistic, and the conditional likelihood function of the

‘tetrad logit’ estimator is a quasi likelihood and, therefore, does not satisfy

the information equality. Hence, the results on size for these two estimators

are based on the Wald statistic.

Table 3 clearly shows that both the bias and standard deviation of ϑ̂ are

O(n−1). Consequently, the likelihood ratio test is size distorted even in large

samples. Point estimation through the modified likelihoods gives estimators

with small bias relative to their standard error. Even for n = 25, the bias

is only about 20% of the bias in maximum likelihood estimator. In larger
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Table 3
β-model. Design A1 for all n

n ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈
mean bias standard deviation

25 0.1098 0.0204 0.0304 0.1897 0.1560 0.1572
50 0.0492 0.0045 0.0071 0.0717 0.0679 0.0681
75 0.0320 0.0020 0.0032 0.0467 0.0450 0.0451

100 0.0237 0.0011 0.0017 0.0341 0.0332 0.0332
median bias interquartile range

25 0.1029 0.0154 0.0253 0.2069 0.1873 0.1889
50 0.0487 0.0042 0.0067 0.0961 0.0913 0.0914
75 0.0316 0.0017 0.0028 0.0630 0.0607 0.0608

100 0.0236 0.0010 0.0017 0.0464 0.0450 0.0451
empirical size (α = .10) empirical size (α = .05)

25 0.1937 0.1134 0.1147 0.1142 0.0627 0.0637
50 0.1896 0.1128 0.1125 0.1178 0.0558 0.0555
75 0.1866 0.1092 0.1081 0.1142 0.0575 0.0569

100 0.1890 0.1042 0.1025 0.1103 0.0520 0.0513

samples, the estimators are essentially unbiased. Interestingly, both ϑ̇ and ϑ̈

are also less volatile than is ϑ̂. Thus, here, bias correction does not come at

the cost of an increase in dispersion. Together with the substantial decrease

in mean squared error, inference, too, improves dramatically. The likelihood

ratio statistics for ˙̀(ϑ) and ῭(ϑ) have near-theoretical size for all n.

To give a more complete picture on inference via modifying the profile

likelihood Figure 1 presents power curves for the likelihood ratio statistic

that go along with Table 3. The curves for ˆ̀(ϑ) (solid lines) are symmetric

but not correctly centered, reflecting the fact that they are size distorted.

This is so for all sample sizes and significance levels considered. Modifying

the likelihood shifts the power curve so that the likelihood ratio test is

(approximately) size correct. This is done without significantly altering the

shape of the power curves. For the smallest sample size considered (n = 25;

upper two plots) there is a small difference in power between the likelihood

ratio test for ˙̀(ϑ) (dashed lines) and ῭(ϑ) (dashed-dotted lines); the former

has slightly higher power than the latter for alternatives ϑ > 1, and slightly

less power for ϑ < 1. This difference vanished rapidly as n increases, however,

which is in line with the similar performance of both corrections observed

in Table 3.

Tables 4 and 5 show that all conclusions from Design A1 carry over to the
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Fig 1. Power curves. Design A1 for all n
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Table 4
β-model. All designs for n = 50

Design ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈
mean bias standard deviation

A1 0.0492 0.0045 0.0071 0.0717 0.0679 0.0681
A2 0.0499 0.0054 0.0079 0.0742 0.0704 0.0705
A3 0.0467 0.0033 0.0047 0.0933 0.0890 0.0891
A4 0.0497 0.0049 0.0024 0.1391 0.1335 0.1335
B1 0.0526 0.0073 0.0096 0.0768 0.0728 0.0729
B2 0.0490 0.0035 0.0059 0.0747 0.0707 0.0708
B3 0.0493 0.0046 0.0060 0.0936 0.0891 0.0891
B4 0.0500 0.0043 0.0005 0.1380 0.1320 0.1316

median bias interquartile range
A1 0.0487 0.0042 0.0067 0.0961 0.0913 0.0914
A2 0.0482 0.0040 0.0064 0.0995 0.0943 0.0945
A3 0.0441 0.0008 0.0022 0.1247 0.1191 0.1191
A4 0.0412 -0.0032 -0.0059 0.1827 0.1748 0.1748
B1 0.0513 0.0061 0.0084 0.1034 0.0981 0.0982
B2 0.0479 0.0024 0.0049 0.0999 0.0948 0.0949
B3 0.0470 0.0024 0.0039 0.1252 0.1195 0.1196
B4 0.0438 -0.0018 -0.0052 0.1827 0.1740 0.1743

empirical size (α = .10) empirical size (α = .05)
A1 0.1896 0.1128 0.1125 0.1178 0.0558 0.0555
A2 0.1857 0.1135 0.1118 0.1139 0.0602 0.0603
A3 0.1565 0.1098 0.1082 0.0878 0.0581 0.0563
A4 0.1287 0.1095 0.1083 0.0664 0.0594 0.0592
B1 0.1902 0.1141 0.1112 0.1146 0.0582 0.0579
B2 0.1801 0.1081 0.1049 0.1040 0.0574 0.0564
B3 0.1498 0.1052 0.1030 0.0830 0.0554 0.0538
B4 0.1236 0.1064 0.1067 0.0634 0.0543 0.0551
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other designs. Moreover, the introduction of correlation between regressors

and heterogenous coefficients or skewing the distribution from which the

latter are drawn does not prevent the modified likelihood to improve on

maximum likelihood both in terms of point estimation and inference. A

comparison of the two tables clearly shows that both the bias and standard

deviation of ϑ̂ shrink by a factor of one half as n doubles, again illustrating

that both are of order n−1. The subsequent reduction in bias by considering

ϑ̇ and ϑ̈ and improvement in size are manifest for all designs.

Table 5 further shows that the modified-likelihood approach outperforms

bias correction of the maximum-likelihood estimator in Designs A3 and B3

and, in particular, in Designs A4 and B4. There, bias correction of maximum

likelihood introduces rather substantial additionial bias relative to ϑ̂. The

additional bias also leads to a large deterioration of the empirical size of the

Wald statistic associated with ϑ̌, with actual sizes ranging up to seven times

the nominal size. The performance of the modified likelihood is comparable

to Graham’s ‘tetrad logit’ estimator ϑ̌ in terms of bias, and it tends to be

somewhat more accurate in terms of the empirical size of the associated

hypothesis tests. Moreover, inference based on the ‘tetrad logit’ estimator is

conservative in all designs even though, with n = 100 and therefore 4, 950

dyadic observations, the sample size is large.
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