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Abstract

Consider dyadic random variables on units from a given population. It is common
to assume that these variables are jointly exchangeable and dissociated. In this case
they admit a non-separable specification with two-way unobserved heterogeneity. The
analysis of this type of structure is of considerable interest but little is known about
their nonparametric identifiability, especially when the unobserved heterogeneity is
continuous. We provide conditions under which both the distribution of the observed
random variables conditional on the unit-specific heterogeneity and the distribution
of the unit-specific heterogeneity itself are uniquely recoverable from knowledge of the
joint marginal distribution of the observable random variables alone without imposing
parametric restrictions.
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1 Introduction

Dyadic data arise naturally from pairwise interaction between units belonging to a given

population. Such data feature prominently in many areas of economics, psychology, and

sociology, and their analysis has received an increasing amount of attention (Graham 2020

surveys recent contributions). Being a form of repeated-measurement data, dyadic data

are naturally expected to be dependent. To govern this dependence the literature usually

proceeds under the assumption that the array of dyadic variables is (jointly) exchangeable

and dissociated. By a result of Kallenberg (1989) this can be seen to correspond to a

nonparametric decomposition of the variable of interest into a pair of unit-specific random

variables and a dyadic-specific random variable. As such, it yields a two-way generalization

of the well-known one-way decomposition of longitudinal data.

The distribution of observable random variables conditional on the unit-specific effects

and the distribution of those effects itself are often both of chief interest. In the context of

one-way models this is almost invariably the case, and a variety of conditions under which

these distributions are (nonparametrically) identified have been obtained (see Schennach

2020, 2021 for an overview and many references). Examples of economic applications with

dyadic data are analyzed in Ahmapoor and Jones (2019), Bonhomme (2021), and Devereux

(2018), for example. Contrary to the longitudinal-data case, however, the conditions under

which such specifications are identified are much less clear. In this paper we provide

conditions for this to be the case.

Our approach covers general non-separable representations and focusses on the case
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where the unit-specific effects are continuously distributed. We exploit different types of

conditional-independence restrictions implied by the assumption that the dyadic array is

exchangeable and dissociated. These restrictions, when coupled with an intuitive injectivity

requirement on an integral operator, are sufficient to obtain nonparametric identification

of all distributions of interest.

2 Setup

Let N1 := {1, 2 . . .} and N2 := {(i1, i2) ∈ N1 ×N1 : i1 < i2}. We consider undirected dyadic

data (Xi1,i2)(i1,i2)∈N2 , abstracting away from the presence of covariates (to handle them it

suffices to state all assumptions as holding conditional on them). The probability structure

of the array is governed by two general nonparametric restrictions, stated in Assumption

1.

Assumption 1. The array (Xi1,i2)(i1,i2)∈N2 is jointly exchangeable and dissociated.

Joint exchangeability means that the distribution of the array is invariant to a relabelling

of the indices. The array is dissociated if Xi1,i2 and Xi3,i4 are independent if their indices

have no element in common. This allows for general dependence between variables that

share an index.

From Kallenberg (1989), Assumption 1 implies that, almost surely,

Xi1,i2 = H(Vi1 , Vi2 ,Wi1,i2) (2.1)
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for mutually independent i.i.d. random variables (Vi)i∈N and (Wi1,i2)(i1,i2)∈N2 and a function

H : V ×V ×W 7→ X . This representation reveals the dependency structure in the array in

a transparent manner. Moreover, Equation (2.1) is a non-separable two-way decomposition

of Xi1,i2 into a pair of random effects (Vi1 , Vi2) and an idiosyncratic component Wi1,i2 that

varies at the dyad level.

Structures as in Assumption 1 have been receiving an increasing amount of attention.

Davezies, d’Haultœuille and Guyonvarch (2021), Menzel (2021), and Graham, Niu and

Powell (2024), for example, are concerned with the estimation of various functionals of

the marginal distribution of Xi1,i2 . This distribution, which by Assumption 1 does not

depend on (i1, i2), is nonparametrically identified. In many contexts, however, one is more

interested in (functionals of) the distribution of Xi1,i2 conditional on (Vi1 , Vi2), as well as

in the marginal distribution of the Vi1 itself. Several interesting examples are discussed

in Devereux (2018), Ahmapoor and Jones (2019), and Bonhomme (2021). The extent

to which these conditional distributions are nonparametrically identified is, however, not

immediately clear.

The issue of identification has received attention in the context of stochastic block

models for network formation, where it follows indirectly from the consistency results on

spectral clustering (see von Luxburg, Belkin and Bousquet 2008, Sussman, Tang, Fishkind

and Priebe 2012, and Lei and Rinaldo 2015, among others), and, to a lesser extent, in

weighted versions thereof; see Allman, Matias and Rhodes (2011) and Jochmans (2024).

These arguments rely heavily on the number of classes—that is, |V|—being finite. In this
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paper, our aim is to investigate the potential for identification in the case where all the

variables are continuously distributed. To the best of our knowledge, no such result is

currently available. Assumption 2 summarizes the continuity assumptions under which we

will work.

Assumption 2. The joint distribution of (Xi1,i2 , Vi1 , Vi2) admits a bounded density with

respect to the Lebesgue measure on X × V × V. The implied marginal and conditional

densities are also bounded.

We establish identification under two assumptions that involve the density of Xi1,i2

conditional on Vi1 (or, equivalently, in light of Assumption 1, on Vi2), which we denote by

fX|V (recall that this function is independent of the indices in question). For any set A,

denote by G(A) the set of all absolutely-integrable functions with domain A. We then let

[LX|V φ](x) :=
∫
fX|V (x|v)φ(v) dv

map φ ∈ G(V) to LX|V φ ∈ G(X ). We impose the following requirement on this operator.

Assumption 3. The operator LX|V is injective.

Injectivity assumptions of this kind are common in the analysis of latent-variable models;

see, e.g., Carrasco, Florens and Renault (2007) and Hu and Schennach (2008). As explained

in the latter paper, under Assumption 2, one sufficient condition for Assumption 3 to hold

is the completeness of the distribution of Vi1 conditional on Xi1,i2 . A variety of primitive

conditions for this are available in the literature; see, e.g., Andrews (2017), d’Haultfœuille

(2011), and Hu, Schennach and Shiu (2017).
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Our fourth and final assumption arises due to the non-uniqueness of the representation

in (2.1), due to the fact that the (Vi)i∈N1 are latent and that the function H is not specified.1

Assumption 4. For a known functional µV of fX|V we have that µV (v) = v for all v ∈ V.

This assumption can be interpreted as a location normalization.

An example that satisfies all of Assumptions 1–4 is the additively-separable specification

Xi1,i2 = ϑ+ Vi1 + Vi2 +Wi1,i2 ,

where ϑ := E(Xi1,i2) and both (Vi)i∈N1 and (Wi1,i2)(i1,i2)∈N2 are normally distributed with

variances σ2
v and σ2

w, respectively. In this example, Assumption 3 is a consequence of the

well-known completeness property of the exponential family; see, e.g., Newey and Powell

(2003, Theorems 2.2 and 2.3) and the discussion in Hu and Schennach (2008, pp. 200) or

Hu, Schennach and Shiu (2017, pp. 48). Further, here, Assumption 4 goes through for

the linear functional E(Xi1,i2|Vi1)−E(Xi1,i2), for example. In an error-component context,

this specification can be seen as an extension of analysis of variance to dyadic data. In a

clustering context one may be interested in

corr(Xi1,i2 , Xi1,i3) =
σ2
v

2σ2
v + σ2

w

,

which is the two-way analog of the intraclass correlation coefficient (as in Moulton 1986).

Theorem 1 summarizes our main result.

1For example, if (2.1) holds for some Vi ∼ FV then it also holds for the transformed random variable

FV (Vi) ∼ uniform(0, 1) (along with a suitably modified function H) by the probability integral transform.
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Theorem 1. Let Assumptions 1–4 hold. Then the distribution of Xi1,i2 conditional on

(Vi1 , Vi2) and the distribution of Vi are uniquely recoverable from knowledge of the joint

distribution of (Xi1,i2)(i1,i2)∈S2 where S2 := {(i1, i2) ∈ S1 × S1 : i1 < i2} and S1 is any subset

of N1 with |S1| ≥ 4.

The proof of Theorem 1 is given in the next section.

3 Proof of Theorem 1

Throughout the proof, for a pair of (possibly multivariate) random variables A ∈ A and

B ∈ B, we let fA,B denote their joint density, fA and fB their marginal densities, and fA|B

and fB|A their implied conditional densities. We also let

[LB|A φ](b) :=
∫
fB|A(b|a)φ(a) da

be the integral operator mapping φ ∈ G(A) to LB|A φ ∈ G(B) and, finally, for any b ∈ B,

let ∆b,a φ(a) := fB|A(b|a)φ(a) for any φ ∈ G(A).

Our proof consists of two steps. Each step is based on a different implication of

conditional-independence restrictions embedded in Assumption 1. In the first step we

recover the joint density of (X1,2, V1). This also identifies the marginal and conditional

densities. In the second step we use this knowledge to tease out the joint distribution of

X1,2, V1, V2, from which all conditional densities again follow. Our arguments below rely

on knowledge of the joint distribution of (X1,2, X1,3, X1,4, X3,4), which is nonparametrically
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identified. Here, the choice of indices is arbitrary and, by joint exchangeability, without

loss of generality.

Consider, first, the distribution of (X1,2, X1,3) conditional on X1,4. This distribution

has associated with it the integral operator

[LX1,2,X1,3|X1,4 φ](x1,2;x1,3) =
∫
fX1,2,X1,3|X1,4(x1,2, x1,3|x1,4)φ(x1,4) dx1,4,

where we are fixing the variable X1,3 to a given value x1,3 ∈ X . As is apparent from the

representation of the array in Equation (2.1), Assumption 1 implies that (X1,2, X1,3, X1,4)

are dependent only because of their joint dependence on the variable V1. Therefore, we

have the factorization

fX1,2,X1,3,V1|X1,4(x1,2, x1,3, v1|x1,4) = fX1,2|V1(x1,2|v1) fX1,3|V1(x1,3|v1) fV1|X1,4(v1|x1,4).

Furthermore, because

[LX1,2,X1,3|X1,4 φ](x1,2;x1,3) =
∫
fX1,2,X1,3,V1|X1,4(x1,2, x1,3, v1|x1,4)φ(x1,4) dv1 dx1,4,

we have the operator equivalence relation

LX1,2,X1,3|X1,4 = LX1,2|V1 ∆X1,3,V1LV1|X1,4 . (3.2)

Because
∫
fX1,3|V1(x1,3|v1) dx1,3 = 1 for all v1 ∈ V , marginalizing with respect toX1,3 further

yields

LX1,2|X1,4 = LX1,2|V1 LV1|X1,4 . (3.3)

By exchangeability, LX1,2|V1 = LX|V as defined in the text. By Assumption 3 this operator

is injective and so, by Lemma 1 of Hu and Schennach (2008), L−1
V1|X1,2

exists and is densely
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defined over G(V). Therefore, Equation (3.3) yields

L−1
X1,2|X1,4

= L−1
V1|X1,4

L−1
X1,2|V1

. (3.4)

Combining Equations (3.2) and (3.4) then yields the spectral decomposition

LX1,2,X1,3|X1,4
L−1
X1,2|X1,4

= LX1,2|V1
∆X1,3,V1

L−1
X1,2|V1

.

By Assumptions 2-4 the arguments of Hu and Schennach (2008, Proof of Theorem 1,

pp. 211-213) yield uniqueness of this decomposition, identifying the density function of

X1,2 conditional on V1 and, with it, the operator LX|V . Further, with this operator in hand

we equally recover

L−1
X1,2|V1

LX1,2|X1,4
= LV1|X1,4

,

and so the density of V1 conditional on X1,2, from re-arranging Equation (3.3). Because

the marginal density of X1,2 is identified, this equally yields the marginal density of V1.

Consider, next, the distribution of (X1,2, X1,3) conditional on X3,4. This distribution

has associated with it the integral operator

[LX1,2,X1,3|X3,4 φ](x1,2;x1,3) =
∫
fX1,2,X1,3|X3,4(x1,2, x1,3|x3,4)φ(x3,4) dx3,4,

where we are again fixing the variable X1,3 to a given value x1,3 ∈ X . Using Assumption 1,

fX1,2,X1,3|X2,4(x1,2, x1,3|x3,4) =
∫∫

fX1,2|V1(x1,2|v1) fX1,3,V1|V3(x1,3, v1|v3) fV3|X3,4(v3|x3,4) dv1 dv3,

and so we have the operator equivalence relation

LX1,2,X1,3|X3,4 = LX1,2|V1LX1,3,V1|V3LV3|X3,4 .
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In this equality the only operator that has not yet been shown to be identified is LX1,3,V1|V3 .

The remaining operators on the right-hand side are both injective. Therefore, we can invert

the above equation to obtain

LX1,3,V1|V3
= L−1

X1,2|V1
LX1,2,X1,3|X3,4

L−1
V3|X3,4

,

thereby identifying the density of (X1,2, V1) conditional on V2. As the marginal density of

V2 has already been identified, we then equally recover the joint density of (X1,2, V1, V2) as

well as all the implied conditional densities. The proof of the theorem is thus complete.
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