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Introduction

Inference in the presence of nuisance parameters is complicated.

Long history of ‘modifying’ estimating equations to make them less sensitive
to estimation noise in nuisance parameters.

A key concept is orthogonality—due to work of Neyman (1959, 1979)—which
has found renewed applicability in recent work on high-dimensional inference.

When nuisance parameters are very poorly estimated, (first-order) Neyman
orthogonality is insufficient.

We consider higher-order generalizations of Neyman orthogonality that yield
increased robustness.

Approach is (conditional) likelihood based and general.

Useful in settings with many fixed effects, such as panel data or network
data.
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Consider a likelihood-based setting where we have i.i.d. data z1, ..., z, from
density

J(2i500,m0).
Here, 7o is the nuisance parameter.

Interested in inference on parameter po defined through

E(u(z:; 00, M0; 110)) = 0.

We take everything to be scalar valued for simplicity of presentation.

For now we simply set po = 0o, in which case a natural choice for u is

_ dlog f(z:;6,1)

u(zi;0,m) = u(2i;0,1;0) 20 ,

the score.

4/ 30



Let 7 be an auxiliary estimators of 7.
Consistent but potentially converging very slowly.

The plug-in estimator 6 solves

n

1
- 1797 n) =
- E u(z:;0,7) =0

=1

for 6.

Then

(5 () o) 0ot

and properties of 6 — 0y are dictated by behavior of sample average on the
right.
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An expansion and the role of sample splitting

Under regularity conditions the difference

%Zu(zi;éo, — %Z 21,90,770
=1 i=1

has the expansion
q
1 dPu(z;; 0o, . .
D 1E Pl 00, m0) (7 —=n0)” ¢ + Op (1 — 10| "),
= ! dn®
up to the term
q n
1 1 dpu(zi'ﬁo 170) d”u(zi’eo,no) N
22N S WA Y 0) g (&M E5 D0, 70) )P L
s ap )0

This final term can generally be ensured to be oP(n71/2) by using sample

splitting and cross fitting.
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The role of orthogonalization

If we want /n(6 — 6) = Op(1) then, in general,
i =m0 = Op(n~"?)
is required.
This puts strong requirements on the auxiliary estimator.

With first-order (Neyman) orthogonality,

E (du(3790:n0)> _ O7
dn

and 7 —no = OP(nfl/ *) suffices to remove the first-order effect of estimation
noise in the nuisance parameter.

For score for 6, first-order orthogonality is simply information orthogonality:

g ((@(zi:00,m0)\ _ (@ log f(zi:600,m0) ) _
dn df dn
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We say that a function is (Neyman) orthogonal to order ¢ when its first ¢

derivatives with respect to the nuisance parameter have zero mean at true

values: . 0
E(M):O foralll1 <p<yq.
dnp

In this case, we need only that
fl—no = OP(nfl/Z(qul))

for estimation noise in A to not affect the limit distribution of 8

Constructing functions that are first-order orthogonal is well understood
(even outside the likelihood setting).

Look for modifications to u that deliver u; which are orthogonal to order g.
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The Neyman-Scott example

‘We have
zit ~ N(ni0,00).

The score contribution of stratum 7 is
1 § T_ (zit — 77i)2
) =—— T- == 2 |,

Note that

du(zi; 0, T (i —mi
E9,m ( U(Zdn n)) = _E9,m (Zt_l(ezt ! )> =0.

The score in this problem already is orthogonal to order 1.
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First-order orthogonality is insufficient to deal with incidental-parameter
bias.

By an expansion u(z;; 0o,m:) — u(zi; 6o, n:0) is equal to

d*u(zi;00,mi0) \ (0 — nio)? du(zi; 0o, mi0)
E ( i 5 + an, (i — mio)
_ T et Shaemw)
93 2 6(2) 3 3 .

Both terms have expectations that are O(1), in general, so both need to be
handled to reduce bias.

If we evaluate this in maximum-likelihood estimator 7j; = z; ~ N(n;0, %0/T)
and take expectations we get

. T var(z;) k) cov(zi, Zi) 1 1 1
Blu(a 00, )) = g5 T = 3 HEeA) _ & o).

The terms represent estimation noise in 7; and dependence between 7); and
zit, respectively.
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Comment: Bias correction in panel data

In a general panel data problem n = N x T and dim7n « N, and we can at
best construct
fi —nio = Op(T~ ).

For T2 = o(n~"*) we need that

N = o(T).

This is the same rate requirement to ensure asymptotic unbiasedness of the
(uncorrected) maximum-likelihood estimator.

With orthogonality to order ¢ (combined with sample splitting in the time
series dimension) the bias is reduced from O(T~') to O(T~?) and we require
only that

N =o(T*™)

for a correctly-centered limit distribution.

This connects to the literature on (higher-order) bias correction.
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Bhattacharyya basis

Collect data in z = (21, ..., 2,) and write £(z;00,1m0) for the likelihood.

For any integer o let

w0 = f(z;lf)vn) doegv;g n.
For example,
vi(z;0,m) = %;;9’77)7
va(2:0,1) = & 1ogj1§§;9,n) N (dlogiﬁ;;e,n)){

Note that Eg,(vo(z;6,7)) = 0 for any o.
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Orthogonality to order g

Collect the leading o functions v1, v, . . ., v, in the vector function wo(z;0,n).

We look for coefficient vector ¢ such that
UZ(Z, 67 77) = ’LL(Z, 67 7]) - GQ(07 n)/w4(27 95 77)

is orthogonal to order q.

Using Bartlett identities the solution is

aq(0,m; 1) = Eo,n(wqe(2;0,m) we(2; 0, 77),)71 Ko, (wq(z;0,m) u(z;0,m))

This is a projection coefficient.

We recover the projected score of Small and McLeish (1989) and Waterman
and Lindsay (1996).
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Intuition: Orthogonality to order 1

For any (scalar) coefficient a1 in
ui (2 0,m) = u(z;0,m) — a1(6,m) v1(2;6,n)
we immediately have that
Eo.n(ui(2;0,n)) = Eo,(u(z;0,m)) (= 0 here).

We next solve
Eo., (du(Z;&n)) ~ a1(6,7) Eo., (dvl(Z;G,n)> _0

dn dn
to find

o= (o (450)) (o (550))
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Intuition: Orthogonality to order 2

Look for coefficient as = (a21,a22)" in
uz(2;0,m) = u(z;0,n) — a21(0,m) vi(z;0,n) — a(8,n) v2(2;0,m)

so that the resulting function is orthogonal to order 2.

From the constraint on the first derivative we find that

an(ev 77) = ai (07 7)) - a22(97 77) b1 (97 77)7

where a1 is as before and

o o (58 o (150
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Plugging this back in gives

u;(za07n) = UT(%@,U) - (122(0,7’]) U;(z’07n)a

where
U;(zyeyn) = 'U2(Z§9777) - b1(07n) vl(z;ean)'

Recall that u7 is orthogonal to order 1.
In the same way, v5 is orthogonal to order 1.
It follows that u3 is orthogonal to order 1 for any as2.

Taking second derivatives and expectations shows that

azs(0,7) = (Efm (%ﬁ)) (Eg”’ (W))l

The terms involving de22(9:m)/ay and 4*a22(9.1)/ay? both drop out.

The vector a2 is the solution to linear system.
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Comment: Ancillarity to order ¢

An implication of the above is that (for the case of the score for 6) looking
for Neyman orthogonality to order g is equivalent to choosing wu; such that:

For all 1 <o <g,
E(ug(2;00,70) vo(2;00,70)) = 0,

which is a least-squares problem.

For all 1 <o <g,

d° .
FEGo,n(Uq(ZWOJIO)) =0,
m n=no
which is E-ancillarity to order q.
The equivalence follows from the fact that
d° « « d°l(z; 0o,
dTT)]E%m(uq(Z;eOano)) = /Uq(z;eoyno) % dz.

17 / 30



Other parameters of interest

When interest lies in po defined through
E(u(z; 00,703 o)) = 0
we proceed as before and obtain the coefficient

aq(0,m; 1) = Eon(wq(2;0,m) we(2;0,n)" )" Bon(wg(2;0,m) u(z; 0,m; 1))
— Eo.(wq(230,m) we(z;0,m)) " Ba(6,m; 1)

for Bq(0,m; 1) the leading g derivatives (wrt 1) of
Bo(0,m; ) := Eo . (u(z;0,m; 1))
No longer projection coefficient, as Bo(6o, n0; 1) = 0 only at u = po.

Now,
E(ug(2; 00, 10; 10) wq(2; 60,10)) = B (6o, 05 ko);

the adjusted ‘score’ has an interpretation of a higher-order influence function.
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Example: Neyman-Scott problem

Recall that
zit ~ N(n:0,600).

Here, can look at contributions of individual strata, so

1 (i —mi)?
P =y
and
T . P . T . —_ . 2
i (2i30,m) = 7Zt=1(20” M (e 0,m) = —% + (Zt:l(?t m)) :

We find a21 = 0 and a2z = /27 so that

uy(zi50,1m;) = % (W —(T - 1))

which does not depend on 7;.

The implied estimator performs the usual degrees-of-freedom correction.
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We may also be interested in orthogonalizing functions other than the score.

An example is po = Y/~ Zfil n%. This fits our framework, with

N
1
w(zi, ..., 2N 0,m, .. N ) = N § n — p
1=1

We find that, for given 0,

NZZ’_*

is an estimator that is second-order orthogonal.
The bias of the maximum-likelihood estimator is fo/T.

The plug-in version of our estimator based on maximum-likelihood has bias
6o/T2, and so is bias reducing.

The plug-in version of our estimator based on the corrected estimator of 6y
is exactly unbiased.
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Example: Linear autoregression

Now suppose that
Zit = Mio + PoZit—1 + €it, i ~ N(0,00).

Can recenter the data by working with z;: — zi0, so initial condition is set to

Zero.

Here, 0 = (p,o?). The adjustment for o2 is the same as before, so we focus
on the score for p.

Now,
T
Dy Zit—1(zit — i — pZit—1)
= =
and the score is not orthogonal to any order.

)

u(zi;0,m:; p)
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The second-order orthogonal score takes the form

u3(2i;0,mi5 p) = u(zi; 0,m1; p) + c(p) + c(p) T 1i(p) (n: — 71 (p)).

1 1 1-p7
=—(1-=
le) 1—/)( T 1—0)

and 7;(p) = zi — pZi—.

At the maximum-likelihood estimator (for given 6) this yields

_ i zi— (2 — sz) —p(zit-1 — Zi-)) +elp)

u(zi; 0,7 (p); p) + c(p)

which is known to be unbiased for fixed T'.

Connects to Cox and Reid (1987), Lancaster (2000), Woutersen (2002), and
Arellano (2003) where information orthogonality is used (but not in isolation)

First-order orthogonal score is
x T .
ui (i3 0, 1) = u(zi;0,mi) + c(p) —5 mi (i = 7i(p))-
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Comment: profiled estimation

For first-order bias correction of 0 sample splitting is not needed.
This follows from the fact that, for ¢ > 2,

E (dUZ(ZH@oJ?iO)

an; v1 (235 9(»?71())) =0

so the influence function of 7;(#) in

dv1(zs; 60, mi0)

—1
s ) v1(zi; 600, m0)

7i(00) — nio = —E (
is uncorrelated with dug(zi:60,m:0)/dn; and their dependence on the same data

is irrelevant.

Differentiating with respect to 7 twice the zero-mean property
Eo,,(ug(z;0,1)) = 0 an re-arranging yields

- (duZ(Z;G, n) (dQuZ(Z;H,n)
| —— o\ — 5

1
; =-E

5 + ug(z;0,m) v2(z; 9,77))

from which the result follows.
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Example: Network regression

Consider n-dimensional outcome vector y generated through

y=Xno+e, e ~ N(0,001,).

Approach for 6y boils down to the usual degrees-of-freedom correction.

Interest lies in
Ho = 776@ 1o
for chosen matrix Q.

Here,
u(z;0,m ) = p—1'Qn.

The plug-in estimator uses 7 = (X'X) ' X'y = no + (X’X) ' X'e and is
biased:
E(7' Q1) = 16Q o + 0o tr(Q(X'X) ™).
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A first-order adjustment is

ui(z:0,m, 1) = p—n1'Qn— 21 Q7 — xn).

A second-order adjustment is

us(2;0,m, 1) = p— 7' Qi+ 0tr(Q(z'z) ")

which no longer depends on 7.

The implied estimator (using degrees-of-freedom corrected estimator of 6)
is the Andrews et al. (2008) estimator.

Gives exactly unbiased estimator.
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Team production

Let

1/
TYm TYm Ym
Yiy iy = Qm (”il Jm + M /m) €i1yerrrim

be the production of the team of m workers i1, ... im.

‘We take log-normal errors with variance that can depend on m.
This is a CES production function that depends on team size.
Inputs are worker ‘quality’.

Here, a,, is total factor productivity and ~,, measures complementarity.
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Here, we do not get a clean factorization of the likelihood.

We look at units that produce on their own and together in a team of size

two.

The normality assumption allows for tractable computation (using Faa di

Bruno).

We normalize oy = 1:
-Single production follows the Neyman-Scott problem.

-Use a random subset of such team output as hold-out sample.
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Data and results

Data on scientific output of academic researchers (Ductor et al. 2014).
Co-authorship network, based on EconlLit.
55k papers for 6.5k authors.

Results for teams of size two (all with sample splitting):

¢ SUBSTITUTION 3  ELASTICITY 1/(1 — v3) TFP ag VARIANCE o2
0 0.116 1.131 1.370 1.617
1 T T Toae T T T T T T 1131 - T T T T 1386 1.617
[-0.536, 0.605] - [1.295, 1.488] [1.552, 1.725]
2 0.449 1.815 1.360 1.454
[-0.074, 0.920] - [1.257, 1.480] [1.380, 1.536]
3 0.371 1.590 1.360 1.454
[-0.142, 0.817] - [1.258, 1.481] [1.381, 1.540]
4 0.374 1.598 1.360 1.450
[-0.139, 0.817] - [1.257, 1.480] [1.377, 1.536]
5 0.377 1.605 1.360 1.450
[-0.136, 0.820] - [1.257, 1.480] [1.376, 1.534]
6 0.377 1.605 1.360 1.450
[-0.136, 0.821] - [1.257, 1.480] [1.376, 1.534]
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Simulation

o
0
T

median bias
o

°
o
T

true ~ value
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Limitations

The parametric setting is important in our derivations.

First-order orthogonality can be achieved outside the likelihood setting for
any moment equation u(z;;0,n; 1) using any estimating equation v(z;;6,n)

for the nuisance parameter.

Can treat a in
u(zi;0,m; 1) — av(zi;0,m)

as an additional nuisance parameter. The modified score is orthogonal to it!

This does not extend to higher-order setting: The implied system of equations
becomes inconsistent, in general.

In certain settings other modifications can be done, but no discussion on this
today.
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