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Introduction

Inference in the presence of nuisance parameters is complicated.

Long history of ‘modifying’ estimating equations to make them less sensitive

to estimation noise in nuisance parameters.

A key concept is orthogonality—due to work of Neyman (1959, 1979)—which

has found renewed applicability in recent work on high-dimensional inference.

When nuisance parameters are very poorly estimated, (first-order) Neyman

orthogonality is insufficient.

We consider higher-order generalizations of Neyman orthogonality that yield

increased robustness.

Approach is (conditional) likelihood based and general.

Useful in settings with many fixed effects, such as panel data or network

data.
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Motivation

Consider a likelihood-based setting where we have i.i.d. data z1, . . . , zn from

density

f(zi; θ0, η0).

Here, η0 is the nuisance parameter.

Interested in inference on parameter µ0 defined through

E(u(zi; θ0, η0;µ0)) = 0.

We take everything to be scalar valued for simplicity of presentation.

For now we simply set µ0 = θ0, in which case a natural choice for u is

u(zi; θ, η) := u(zi; θ, η; θ) =
d log f(zi; θ, η)

dθ
,

the score.
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Let η̂ be an auxiliary estimators of η0.

Consistent but potentially converging very slowly.

The plug-in estimator θ̂ solves

1

n

n∑
i=1

u(zi; θ, η̂) = 0

for θ.

Then (
−E

(
du(z; θ0, η0)

dθ

)
+ oP (1)

)
(θ̂ − θ0) =

1

n

n∑
i=1

u(zi; θ0, η̂)

and properties of θ̂ − θ0 are dictated by behavior of sample average on the

right.
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An expansion and the role of sample splitting

Under regularity conditions the difference

1

n

n∑
i=1

u(zi; θ0, η̂)−
1

n

n∑
i=1

u(zi; θ0, η0)

has the expansion

q∑
p=1

{
1

p!
E
(
dpu(zi; θ0, η0)

dηp

)
(η̂ − η0)

p

}
+OP (|η̂ − η0|q+1),

up to the term

q∑
p=1

{
1

p!

(
1

n

n∑
i=1

dpu(zi; θ0, η0)

dηp
− E

(
dpu(zi; θ0, η0)

dηp

))
(η̂ − η0)

p

}
.

This final term can generally be ensured to be oP (n
−1/2) by using sample

splitting and cross fitting.

6 / 30



The role of orthogonalization

If we want
√
n(θ̂ − θ0) = OP (1) then, in general,

η̂ − η0 = OP (n
−1/2)

is required.

This puts strong requirements on the auxiliary estimator.

With first-order (Neyman) orthogonality,

E
(
du(z; θ0, η0)

dη

)
= 0,

and η̂ − η0 = oP (n
−1/4) suffices to remove the first-order effect of estimation

noise in the nuisance parameter.

For score for θ, first-order orthogonality is simply information orthogonality:

E
(
du(zi; θ0, η0)

dη

)
= E

(
d2 log f(zi; θ0, η0)

dθ dη

)
= 0.
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We say that a function is (Neyman) orthogonal to order q when its first q

derivatives with respect to the nuisance parameter have zero mean at true

values:

E
(
dpu(zi; θ0, η0)

dηp

)
= 0 for all 1 ≤ p ≤ q.

In this case, we need only that

η̂ − η0 = oP (n
−1/2(q+1))

for estimation noise in η̂ to not affect the limit distribution of θ̂

Constructing functions that are first-order orthogonal is well understood

(even outside the likelihood setting).

Look for modifications to u that deliver u∗
q which are orthogonal to order q.
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The Neyman-Scott example

We have

zit ∼ N(ηi0, θ0).

The score contribution of stratum i is

u(zi; θ, η) = − 1

2θ

(
T −

∑T
t=1(zit − ηi)

2

θ

)
,

Note that

Eθ,ηi

(
d u(zi; θ, η)

dη

)
= −Eθ,ηi

(∑T
t=1(zit − ηi)

θ2

)
= 0.

The score in this problem already is orthogonal to order 1.
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First-order orthogonality is insufficient to deal with incidental-parameter

bias.

By an expansion u(zi; θ0, ηi)− u(zi; θ0, ηi0) is equal to

E
(
d2u(zi; θ0, ηi0)

dη2
i

)
(ηi − ηi0)

2

2
+

du(zi; θ0, ηi0)

dηi
(ηi − ηi0)

=
T

θ20

(ηi − ηi0)
2

2
−
∑T

t=1(zit − ηi0)

θ20
(ηi − ηi0).

Both terms have expectations that are O(1), in general, so both need to be

handled to reduce bias.

If we evaluate this in maximum-likelihood estimator η̂i = z̄i ∼ N(ηi0, θ0/T)

and take expectations we get

E(u(zi; θ0, η̂i)) =
T

θ20

var(z̄i)

2
−

T∑
t=1

cov(zit, z̄i)

θ20
=

1

2θ0
− 1

θ0
= − 1

2θ0
= O(1).

The terms represent estimation noise in η̂i and dependence between η̂i and

zit, respectively.
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Comment: Bias correction in panel data

In a general panel data problem n = N × T and dim η ∝ N , and we can at

best construct

η̂i − ηi0 = OP (T
−1/2).

For T−1/2 = o(n−1/4) we need that

N = o(T ).

This is the same rate requirement to ensure asymptotic unbiasedness of the

(uncorrected) maximum-likelihood estimator.

With orthogonality to order q (combined with sample splitting in the time

series dimension) the bias is reduced from O(T−1) to O(T−q) and we require

only that

N = o(T 2q−1)

for a correctly-centered limit distribution.

This connects to the literature on (higher-order) bias correction.
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Bhattacharyya basis

Collect data in z = (z1, . . . , zn) and write ℓ(z; θ0, η0) for the likelihood.

For any integer o let

vo(z; θ, η) =
1

ℓ(z; θ, η)

doℓ(z; θ, η)

dηo
.

For example,

v1(z; θ, η) =
d log ℓ(z; θ, η)

dη
,

v2(z; θ, η) =
d2 log ℓ(z; θ, η)

dη2
+

(
d log ℓ(z; θ, η)

dη

)2

.

Note that Eθ,η(vo(z; θ, η)) = 0 for any o.
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Orthogonality to order q

Collect the leading o functions v1, v2, . . . , vo in the vector function wo(z; θ, η).

We look for coefficient vector c such that

u∗
q(z; θ, η) = u(z; θ, η)− aq(θ, η)

′wq(z; θ, η)

is orthogonal to order q.

Using Bartlett identities the solution is

aq(θ, η;µ) = Eθ,η(wq(z; θ, η)wq(z; θ, η)
′)−1 Eθ,η(wq(z; θ, η)u(z; θ, η))

This is a projection coefficient.

We recover the projected score of Small and McLeish (1989) and Waterman

and Lindsay (1996).
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Intuition: Orthogonality to order 1

For any (scalar) coefficient a1 in

u∗
1(z; θ, η) = u(z; θ, η)− a1(θ, η) v1(z; θ, η)

we immediately have that

Eθ,η(u
∗
1(z; θ, η)) = Eθ,η(u(z; θ, η)) (= 0 here).

We next solve

Eθ,η

(
du(z; θ, η)

dη

)
− a1(θ, η)Eθ,η

(
dv1(z; θ, η)

dη

)
= 0

to find

a1(θ, η) =

(
Eθ,η

(
du(z; θ, η)

dη

))(
Eθ,η

(
dv1(z; θ, η)

dη

))−1

.
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Intuition: Orthogonality to order 2

Look for coefficient a2 = (a21, a22)
′ in

u∗
2(z; θ, η) = u(z; θ, η)− a21(θ, η) v1(z; θ, η)− a22(θ, η) v2(z; θ, η)

so that the resulting function is orthogonal to order 2.

From the constraint on the first derivative we find that

a21(θ, η) = a1(θ, η)− a22(θ, η) b1(θ, η),

where a1 is as before and

b1(θ, η) =

(
Eθ,η

(
dv2(z; θ, η)

dη

))(
Eθ,η

(
dv1(z; θ, η)

dη

))−1

.
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Plugging this back in gives

u∗
2(z; θ, η) = u∗

1(z; θ, η)− a22(θ, η) v
∗
2(z; θ, η),

where

v∗2(z; θ, η) = v2(z; θ, η)− b1(θ, η) v1(z; θ, η).

Recall that u∗
1 is orthogonal to order 1.

In the same way, v∗2 is orthogonal to order 1.

It follows that u∗
2 is orthogonal to order 1 for any a22.

Taking second derivatives and expectations shows that

a22(θ, η) =

(
Eθ,η

(
d2u∗

1(z; θ, η)

dη2

))(
Eθ,η

(
d2v∗2(z; θ, η)

dη2

))−1

.

The terms involving da22(θ,η)/dη and d2a22(θ,η)/dη2 both drop out.

The vector a2 is the solution to linear system.
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Comment: Ancillarity to order q

An implication of the above is that (for the case of the score for θ) looking

for Neyman orthogonality to order q is equivalent to choosing u∗
q such that:

For all 1 ≤ o ≤ q,

E(u∗
q(z; θ0, η0) vo(z; θ0, η0)) = 0,

which is a least-squares problem.

For all 1 ≤ o ≤ q,

do

dηo
Eθ0,η(u

∗
q(z; θ0, η0))

∣∣∣∣
η=η0

= 0,

which is E-ancillarity to order q.

The equivalence follows from the fact that

do

dηo
Eθ0,η(u

∗
q(z; θ0, η0)) =

∫
u∗
q(z; θ0, η0)

doℓ(z; θ0, η)

dηo
dz.
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Other parameters of interest

When interest lies in µ0 defined through

E(u(z; θ0, η0;µ0)) = 0

we proceed as before and obtain the coefficient

aq(θ, η;µ) = Eθ,η(wq(z; θ, η)wq(z; θ, η)
′)−1 Eθ,η(wq(z; θ, η)u(z; θ, η;µ))

− Eθ,η(wq(z; θ, η)wq(z; θ, η)
′)−1 βq(θ, η;µ)

for βq(θ, η;µ) the leading q derivatives (wrt η) of

β0(θ, η;µ) := Eθ,η(u(z; θ, η;µ)).

No longer projection coefficient, as β0(θ0, η0;µ) = 0 only at µ = µ0.

Now,

E(u∗
q(z; θ0, η0;µ0)wq(z; θ0, η0)) = βq(θ0, η0;µ0);

the adjusted ‘score’ has an interpretation of a higher-order influence function.
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Example: Neyman-Scott problem

Recall that

zit ∼ N(ηi0, θ0).

Here, can look at contributions of individual strata, so

u(zi; θ, η) = − 1

2θ

(
T −

∑T
t=1(zit − ηi)

2

θ

)
,

and

v1(zi; θ, η) =

∑T
t=1(zit − ηi)

θ
, v2(zi; θ, η) = −T

θ
+

(∑T
t=1(zit − ηi)

θ

)2

.

We find a21 = 0 and a22 = 1/2T so that

u∗
2(zi; θ, ηi) =

1

2θ

(∑T
t=1(zit − z̄i)

2

θ
− (T − 1)

)
which does not depend on ηi.

The implied estimator performs the usual degrees-of-freedom correction.
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We may also be interested in orthogonalizing functions other than the score.

An example is µ0 = 1/N
∑N

i=1 η
2
i0. This fits our framework, with

u(z1, . . . , zN ; θ, η1, . . . , ηN ;µ) =
1

N

N∑
i=1

η2
i − µ.

We find that, for given θ,

1

N

N∑
i=1

z̄2i − θ

T

is an estimator that is second-order orthogonal.

The bias of the maximum-likelihood estimator is θ0/T .

The plug-in version of our estimator based on maximum-likelihood has bias
θ0/T2, and so is bias reducing.

The plug-in version of our estimator based on the corrected estimator of θ0

is exactly unbiased.
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Example: Linear autoregression

Now suppose that

zit = ηi0 + ρ0zit−1 + εit, εit ∼ N(0, σ2
0).

Can recenter the data by working with zit − zi0, so initial condition is set to

zero.

Here, θ = (ρ, σ2). The adjustment for σ2 is the same as before, so we focus

on the score for ρ.

Now,

u(zi; θ, ηi; ρ) =

∑T
t=1 zit−1(zit − ηi − ρzit−1)

σ2
,

and the score is not orthogonal to any order.
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The second-order orthogonal score takes the form

u∗
2(zi; θ, ηi; ρ) = u(zi; θ, ηi; ρ) + c(ρ) + c(ρ)T η̂(ρ) (ηi − η̂i(ρ)).

for

c(ρ) :=
1

1− ρ

(
1− 1

T

1− ρT

1− ρ

)
and η̂i(ρ) = z̄i − ρz̄i−.

At the maximum-likelihood estimator (for given θ) this yields

u(zi; θ, η̂i(ρ); ρ) + c(ρ) =

∑T
t=1 zit−1((zit − z̄i)− ρ(zit−1 − z̄i−))

σ2
+ c(ρ)

which is known to be unbiased for fixed T .

Connects to Cox and Reid (1987), Lancaster (2000), Woutersen (2002), and

Arellano (2003) where information orthogonality is used (but not in isolation)

First-order orthogonal score is

u∗
1(zi; θ, ηi) = u(zi; θ, ηi) + c(ρ)

T

σ2
ηi (ηi − η̂i(ρ)).
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Comment: profiled estimation

For first-order bias correction of θ̂ sample splitting is not needed.

This follows from the fact that, for q ≥ 2,

E
(
du∗

q(zi; θ0, ηi0)

dηi
v1(zi; θ0, ηi0)

)
= 0

so the influence function of η̂i(θ) in

η̂i(θ0)− ηi0 ≈ −E
(
dv1(zi; θ0, ηi0)

dηi

)−1

v1(zi; θ0, ηi0)

is uncorrelated with du∗
q (zi;θ0,ηi0)/dηi and their dependence on the same data

is irrelevant.

Differentiating with respect to η twice the zero-mean property

Eθ,η(u
∗
q(z; θ, η)) = 0 an re-arranging yields

Eθ,η

(
du∗

q(z; θ, η)

dη
v1(z; θ, η)

)
=−1

2
Eθ,η

(
d2u∗

q(z; θ, η)

dη2
+ u∗

q(z; θ, η) v2(z; θ, η)

)
from which the result follows.
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Example: Network regression

Consider n-dimensional outcome vector y generated through

y = Xη0 + ε, ε ∼ N(0, θ0In).

Approach for θ0 boils down to the usual degrees-of-freedom correction.

Interest lies in

µ0 = η′
0Qη0

for chosen matrix Q.

Here,

u(z; θ, η;µ) = µ− η′Qη.

The plug-in estimator uses η̂ = (X ′X)−1X ′y = η0 + (X ′X)−1X ′ε and is

biased:

E(η̂′Q η̂) = η′
0Qη0 + θ0 tr(Q(X ′X)−1).
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A first-order adjustment is

u∗
1(z; θ, η, µ) = µ− η′Qη − 2η′Q(η̂ − xη).

A second-order adjustment is

u∗
2(z; θ, η, µ) = µ− η̂′Q η̂ + θ tr(Q(x′x)−1)

which no longer depends on η.

The implied estimator (using degrees-of-freedom corrected estimator of θ0)

is the Andrews et al. (2008) estimator.

Gives exactly unbiased estimator.
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Team production

Let

yi1,...,im = αm

(
η
γm
i1 /m + η

γm
im/m

)1/γm εi1,...,im

be the production of the team of m workers i1, . . . im.

We take log-normal errors with variance that can depend on m.

This is a CES production function that depends on team size.

Inputs are worker ‘quality’.

Here, αm is total factor productivity and γm measures complementarity.
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Here, we do not get a clean factorization of the likelihood.

We look at units that produce on their own and together in a team of size

two.

The normality assumption allows for tractable computation (using Faà di

Bruno).

We normalize α1 = 1:

-Single production follows the Neyman-Scott problem.

-Use a random subset of such team output as hold-out sample.
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Data and results

Data on scientific output of academic researchers (Ductor et al. 2014).

Co-authorship network, based on EconLit.

55k papers for 6.5k authors.

Results for teams of size two (all with sample splitting):

q SUBSTITUTION γ2 ELASTICITY 1/(1 − γ2) TFP α2 VARIANCE σ2
2

0 0.116 1.131 1.370 1.617

1 0.116 1.131 1.386 1.617

[-0.536, 0.605] – [1.295, 1.488] [1.552, 1.725]

2 0.449 1.815 1.360 1.454

[-0.074, 0.920] – [1.257, 1.480] [1.380, 1.536]

3 0.371 1.590 1.360 1.454

[-0.142, 0.817] – [1.258, 1.481] [1.381, 1.540]

4 0.374 1.598 1.360 1.450

[-0.139, 0.817] – [1.257, 1.480] [1.377, 1.536]

5 0.377 1.605 1.360 1.450

[-0.136, 0.820] – [1.257, 1.480] [1.376, 1.534]

6 0.377 1.605 1.360 1.450

[-0.136, 0.821] – [1.257, 1.480] [1.376, 1.534]
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Simulation

Median bias of the substitution parameter �2 (100 simulations)
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Notes: uncorrected estimator is in green, bias-corrected estimators are in blue, from

lighter (q = 1) to darker (q = 5). 29 / 30



Limitations

The parametric setting is important in our derivations.

First-order orthogonality can be achieved outside the likelihood setting for

any moment equation u(zi; θ, η;µ) using any estimating equation v(zi; θ, η)

for the nuisance parameter.

Can treat a in

u(zi; θ, η;µ)− a v(zi; θ, η)

as an additional nuisance parameter. The modified score is orthogonal to it!

This does not extend to higher-order setting: The implied system of equations

becomes inconsistent, in general.

In certain settings other modifications can be done, but no discussion on this

today.
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