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1 Introduction

Inference in the presence of nuisance parameters has received substantial attention. One

fruitful way to proceed is to work with estimating equations that are orthogonal with

respect to the nuisance parameters in the sense of Neyman (1959). Such equations underlie

much of the results in semiparametric estimation (Newey, 1994) and are at the heart of

recent advances on doubly-robust estimation and high-dimensional inference as discussed

in Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018) and

Chernozhukov, Escanciano, Ichimura, Newey and Robins (2022), among others. A key

finding is that Neyman-orthogonality permits the construction of asymptotically unbiased

estimators that converge at the usual n−1/2-rate provided the nuisance parameter has a

convergence rate that is faster than n−1/4, where n is the sample size.

The faster-than-n−1/4 requirement applies in a variety of semiparametric estimation

problems; Robinson (1988) and Ichimura (1993) are examples. However, it often fails in

problems where the dimension of the nuisance parameter is large relative to the sample size.

Panel data models with fixed effects are an example. There, we observe N units over T

periods of time and the model includes both common parameters and unit-specific nuisance

parameters. The latter are estimated at the rate T−1/2. For an estimator of the former

based on Neyman-orthogonalization to be successful we would therefore need that T−1/2 =

o((NT )−1/4), which translates into the requirement that N = o(T ). This is usually not a

realistic condition in microeconometric applications. In fact, under this requirement the

standard fixed-effect estimator would permit asymptotically-valid inference. Consequently,

(first-order) Neyman-orthogonalization does not solve the incidental parameter problem in

panel data.1

The issue can be even more severe in high-dimensional regressions on network data.

In such settings, the convergence rate of the estimator of the nuisance parameter depends

1The problem is reminiscent of the poor performance of double machine-learning techniques in some

settings, as recently documented by Wüthrich and Zhu (2021) and Angrist and Frandsen (2022). A related

problem where the conventional approach fails is in a nonlinear version of the judge-leniency design, as

discussed in Hahn and Hausman (2021).
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on the connectivity structure of the network (Jochmans and Weidner, 2019). Examples

include the estimation of teacher value-added (Jackson, Rockoff and Staiger, 2014), of the

contributions of worker and firm heterogeneity to the variance of log wages and other co-

variance components (Abowd, Kramarz and Margolis, 1999, Kline, Saggio and Sølvsten,

2020), as well as of complementarity patterns in team production (Ahmadpoor and Jones,

2019, Bonhomme, 2021). Fixed effects in network-formation models are also poorly esti-

mated. This is especially true in the prevalent case where the network is sparse (see, e.g.,

Graham, 2017, 2020).

Motivated by these concerns, we are interested in a higher-order generalization of

Neyman-orthogonality, in the sense of Mackey, Syrgkanis and Zadik (2018). Moreover,

we show how ensuring orthogonality to higher order can successfully reduce bias in several

panel and network models. We say that an estimating equation is Neyman-orthogonal

to order q when all q leading derivatives with respect to the nuisance parameter have

zero expectation. When q = 1, this means that the expected Jacobian is zero, and so

we recover the conventional definition of Neyman-orthogonality (to order one). Working

with estimating equations that are Neyman-orthogonal to order q, when combined with

sample splitting, allows one to construct asymptotically-linear estimators when nuisance

parameters are estimated at a rate faster than n−1/2(q+1). As an example, in the panel data

problem, this reduces the bias from O(T−1) down to O(T−q), yielding valid inference under

the requirement that N = o(T 2q−1). We remark that combining orthogonalization with

sample splitting (or cross-fitting) is important to achieve such an improvement. Moreover,

orthogonalized estimating equations, by themselves, do not, in general, deliver estimators

with improved sampling properties.

We show how to construct estimating equations that are orthogonal to any chosen order

in a general conditional-likelihood setting. These estimating equations can be understood

to be generalizations of the projected score of Small and McLeish (1989) and Waterman

and Lindsay (1996). They have an interpretation as higher-order influence functions, as

introduced in Robins, Li, Tchetgen Tchetgen and van der Vaart (2008). Our approach

applies to general low-dimensional target parameters that satisfy some moment restric-
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tions. This includes functions of the nuisance parameters such as average elasticities or

other average effects. The conditional-likelihood framework allows us to orthogonalize a

given estimating equation without introducing additional nuisance parameters. As is well

known, this is not essential to achieve orthogonality to order one. However, the absence of

additional nuisance parameters turns out to be very helpful in enabling the construction

of higher-order orthogonalized estimating equations.

We illustrate the usefulness of our approach in several examples and in an empiri-

cal application to the estimation of nonlinear regressions on network data; a problem for

which, at present, no alternative solutions exist. In this setting, we estimate a constant

elasticity of substitution (CES) production function from the scientific output of research

collaborations. As in Ahmadpoor and Jones (2019), the production function depends on

researcher-specific fixed effects. Estimates of the parameters can be used to quantify the

degree of complementarity among researchers within teams, and to compute the impact of

counterfactual re-allocations in the spirit of earlier work by Graham, Imbens and Ridder

(2014).

This problem is difficult because in the data that we use (taken from Ductor, Fafchamps,

Goyal and Van der Leij, 2014 and concerning publications in economics on EconLit), the

number of collaborations per researcher is quite low. A conventional estimator is thus

likely to suffer from bias. Our procedure uncovers the presence of complementarity among

authors in the production of research articles. In a counterfactual exercise we also find that

randomly pairing researchers would lead to a decrease in the average quality of articles. Our

findings are corroborated in a simulation experiment targeted to our empirical application.

2 Problem statement and motivation

2.1 Setup

Let Zi = (Yi, Xi) be random vectors, for i = 1, .., N . We consider a setting where the

conditional density function of Yi given Xi, ℓ(y |x; θ0, ηi0), is known up to the parameters
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θ0 and η0i. Throughout, we will treat η10, . . . , ηN0 as nuisance parameters, and leave the

marginal density of the conditioning variable, ℓXi
(x), unrestricted. We are interested in

estimating a parameter µ0 that is defined through the moment condition

N∑
i=1

E(ui(Zi; θ0, ηi0, µ0)) = 0, (2.1)

where the expectations are over Zi under ℓ(y |x; θ0, ηi0) ℓXi
(x). We assume that, for all

i = 1, . . . , N , Zi contains ni individual observations, and denote the total number of obser-

vations as n =
∑N

i=1 ni. For example, in a balanced panel data setting with N units and

T time periods, Zi is the time series of unit i’s observations, ni = T for all i, and n = NT .

Our setup accommodates different types of target parameters. As an example, we can

set µ0 = θ0. In this case, using ui(z; θ, ηi) as a shorthand for ui(z; θ, ηi, θ), one possibility

is to use the score,

ui(z; θ, ηi) =
∂ log ℓ(y |x; θ, ηi)

∂θ
.

More generally, the moment condition (2.1) defines the target parameter

µ0 = µ(θ0, η10, . . . , ηN0, ℓX1 , . . . , ℓXN
),

which can be a function of the parameters θ0 and ηi0 describing the conditional distribution

of Yi given Xi, and of the marginal distribution of Xi. For example, we may be interested

in an average marginal effect of the form

µ0 =
N∑
i=1

∫
mi(x; θ0, ηi0)ℓXi

(x) dx,

where m1, . . . ,mN are known functions.

To illustrate the setup we will refer to two leading examples.

Example: Neyman-Scott model. Our first example is the well-known Neyman and

Scott (1948) model. Here,

Yij = ηi0 + εij, εij ∼ iid N
(
0, σ2

0

)
, i = 1, . . . , N, j = 1, . . . , T, (2.2)
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where the goal is to estimate θ0 = σ2
0 in the presence of the nuisance parameters η10, . . . , ηN0.

Define, for all i = 1, . . . , N ,

ui(Yi;σ
2, ηi) = − T

2σ2
+

1

2σ4

T∑
j=1

(Yij − ηi)
2,

where Yi = (Yi1, . . . , YiT )
⊤ has dimension ni = T , and the total number of observations

is n = NT . It is well-known that the maximum-likelihood estimator of σ2
0 is on average

too small, suffering from bias −σ2
0/T . While in this panel data problem first-order orthog-

onality does not reduce the order of this bias, we demonstrate below that second-order

orthogonalization fully removes it.

Example: CES production function. Consider an environment where we observe

workers producing output in n teams of size 2. Moreover, let k(j, 1) and k(j, 2) denote the

workers in team j, and write K = {(k(j, 1), k(j, 2)) : j = 1, . . . , n} for the set of workers in

all teams; note that a given worker may be part of multiple teams. Consider a model for

team production where team output is a CES aggregate of worker inputs (as in Ahmadpoor

and Jones, 2019),

Yj =

(
ηγ0k(j,1)0 + ηγ0k(j,2)0

2

) 1
γ0

εσ0
j , log εj | K ∼ iid N (0, 1) , j = 1, . . . , n. (2.3)

In this model, one may be interested in estimating the substitution parameter γ0 or the log

error variance σ2
0, average elasticities, or effects of counterfactual re-allocations of workers

to teams, for example.

To analyze this example we consider N ≤ n subsets of teams j, of size ni each. Let

Yi denote the vector of team outcomes in subset i, and let ηi be the collection of all fixed

effects of workers belonging to those teams. Finally, let θ = (γ, σ2)⊤. The scores with

respect to γ and σ2 take the form ui(Yi; θ, ηi), where the dependence of ui on i reflects that

the set of workers who belong to the subset i of teams generally differs from the workers

belonging to another subset. In contrast to our previous example, the theoretical literature

on network models such as (2.3) is scarce, and to our knowledge no approach has as yet

been developed for achieving bias reduction in such a setting.
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2.2 The role of first-order orthogonality and its limitations

In the remainder of this section, we motivate our approach in a setting where one wishes to

estimate µ0 = θ0 based on a random sample Z1, . . . , Zn, taking u to be a univariate function

and η0 to be a scalar. Hence N = 1, and n1 = n is the total number of observations.

If E(
∑n

j=1 u(Zj; θ0, η0)) = 0, a conventional estimator of θ0, say θ̂, would be the solution

to
n∑

j=1

u(Zj; θ, η̂) = 0,

where η̂ is a consistent estimator of η0 obtained in a preliminary step. However, it is

well known that such a “plug-in” estimator is sensitive to the quality of the preliminary

estimator η̂ used.

Assuming sufficient regularity, a standard argument based on a linearization around θ0

yields (
E
(
∂u(Zj; θ0, η0)

∂θ⊤

)
+ oP (1)

)
(θ̂ − θ0) =

1

n

n∑
j=1

u(Zj; θ0, η̂),

so that the sampling properties of θ̂ − θ0 are dictated by the sampling properties of the

estimating equation. We have

1

n

n∑
j=1

u(Zj; θ0, η̂) =
1

n

n∑
j=1

u(Zj; θ0, η0)︸ ︷︷ ︸
(A)

+

(
1

n

n∑
j=1

∂u(Zj; θ0, η0)

∂η
− E

(
∂u(Zj; θ0, η0)

∂η

))
(η̂ − η0)︸ ︷︷ ︸

(B)

+ E
(
∂u(Zj; θ0, η0)

∂η

)
(η̂ − η0)︸ ︷︷ ︸

(C)

+OP (|η̂ − η0|2).

(2.4)

The (A) term in (2.4) is a zero-mean sample average to which a standard central-

limit theorem can be applied. Hence, it is generally OP (n
−1/2). The next two terms in the

expansion capture the first-order effect of estimation noise in η̂. The (B) term can generally
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be ensured to be oP (n
−1/2). A generic approach to achieve this is to compute η̂ from data

that are independent of Z1, . . . , Zn, for example using sample splitting. In that case, (B)

is the product of a sample average of zero-mean random variables—which is OP (n
−1/2)—

and an oP (1) term— as η̂ is consistent for η0—and, therefore, (B) is oP (n
−1/2). The (C)

term, however, features a non-random Jacobian that, in general, is non-zero. Hence, (C)

is OP (|η̂− η0|), and will only be asymptotically negligible when η̂ is superconsistent for η0,

which is not usually the case.

Suppose now that u is first-order orthogonal, in the sense that

E
(
∂u(Zj; θ0, η0)

∂η

)
= 0. (2.5)

Then the (C) term vanishes from (2.4) and we obtain

1

n

n∑
j=1

u(Zj; θ0, η̂) =
1

n

n∑
j=1

u(Zj; θ0, η0) +OP (|η̂ − η0|2) + oP (n
−1/2). (2.6)

The requirement that η̂−η0 = oP (n
−1/4) then guarantees that the impact of the estimation

error in η̂ on θ̂ is asymptotically negligible. While a given function u does not, in general,

satisfy (2.5), Neyman (1959) proposed a general method to transform it into one that does.

The resulting function is said to be Neyman-orthogonal.

Condition (2.5) has a long history in semiparametric estimation problems (Bickel, 1982,

Schick, 1986, Newey, 1994). More recently, it has proved to be a fundamental ingredient

in the literature on high-dimensional inference (see Chernozhukov, Chetverikov, Demirer,

Duflo, Hansen, Newey, and Robins, 2018 or Chernozhukov, Escanciano, Ichimura, Newey

and Robins, 2022). There are, however, instances where it is ineffective. To illustrate this

it suffices to consider the simple panel data setting from the Neyman and Scott (1948)

problem.

Example: Neyman-Scott model (continued). In this problem it is easy to verify

that

E
(
∂ui(Yi;σ

2
0, ηi0)

∂ηi

)
= − 1

σ4
0

T∑
j=1

E (Yij − ηi0) = 0,
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and so the score is already first-order Neyman-orthogonal with respect to the fixed effects.

Nevertheless, given preliminary estimators η̂1, . . . , η̂N , and letting νi = η̂i−ηi0, the estimator

σ̂2 =
1

NT

N∑
i=1

T∑
j=1

(Yij − η̂i)
2,

has expectation σ2
0 − 2/N

∑N
i=1 E(εi νi) + 1/N

∑N
i=1 E(ν2i ), for εi = 1/T

∑T
j=1 εij. Thus, when

using sample splitting, the bias is 1/N
∑N

i=1 E(ν2i ), the mean squared error of the preliminary

estimator. With cross-fitting this is, at best, O(T−1). Hence,
√
NT (σ̂2 − σ2

0) will not have

a correctly-centered limit distribution unless N/T → 0. However, under this condition,

the joint maximum-likelihood estimator of σ2
0 and the fixed effects, too, is asymptotically

unbiased. Hence, having a score that is Neyman-orthogonal, even when combined with

sample splitting, does not suffice to resolve the incidental parameter problem in panel data

problems.

2.3 Higher-order orthogonality

To see how Neyman-orthogonality to a higher order can be helpful we now consider a

further expansion of (2.4). Again assuming sufficient regularity, we have, for any integer

q ≥ 1,

1

n

n∑
j=1

u(Zj; θ0, η̂) =
1

n

n∑
j=1

u(Zj; θ0, η0)︸ ︷︷ ︸
(A)

+

q∑
p=1

1

p!

(
1

n

n∑
j=1

∂pu(Zj; θ0, η0)

∂ηp
− E

(
∂pu(Zj; θ0, η0)

∂ηp

))
(η̂ − η0)

p

︸ ︷︷ ︸
(B)

+

q∑
p=1

1

p!
E
(
∂pu(Zj; θ0, η0)

∂ηp

)
(η̂ − η0)

p

︸ ︷︷ ︸
(C)

+OP (|η̂ − η0|q+1).

Here, the (A) term is the same as before. Also, with sample splitting we can again ensure

that the (B) term will be asymptotically negligible. On the other hand, if the function u
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satisfies the higher-order orthogonality condition

E
(
∂pu(Zj; θ0, η0)

∂ηp

)
= 0, 1 ≤ p ≤ q, (2.7)

the (C) term is equal to zero, and so

1

n

n∑
j=1

u(Zj; θ0, η̂) =
1

n

n∑
j=1

u(Zj; θ0, η0) +OP (|η̂ − η0|q+1) + oP (n
−1/2). (2.8)

Comparing (2.8) to (2.6) we see that the impact of estimation noise in η̂ on our estimator of

θ0 has been reduced further. Moreover, for the impact of estimation error to be negligible,

we now only require that |η̂ − η0|q+1 = oP (n
−1/2). It then follows from standard results

that, as n→ ∞,
√
n(θ̂ − θ0)

d→ N (0,Σθ)

for some Σθ, provided that

η̂ − η0 = oP (n
−1/2(q+1))

holds.

Example: Neyman-Scott model (continued) In the model of Neyman and Scott

(1948),

E
(
∂2ui(Yi;σ

2
0, ηi0)

∂η2i

)
=

T

σ4
0

̸= 0.

It thus follows that ui is not orthogonal to second order (or to any order higher than

two). Below we will show that a second-order Neyman-orthogonal score equation exists;

its solution turns out to be

σ̂2 =
1

N(T − 1)

N∑
i=1

T∑
j=1

(Yij − Y i)
2, (2.9)

where Y i = 1/T
∑T

j=1 Yij. This estimator does not depend on the preliminary estimator of

the fixed effects used. Furthermore, it performs the well-known degrees-of-freedom correc-

tion to the maximum-likelihood estimator, yielding an estimator that is exactly unbiased

for any T ≥ 2.
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The notion of qth-order Neyman-orthogonality as in (2.7) was introduced by Mackey,

Syrgkanis and Zadik (2018). In the context of our likelihood setup, we will give a general

procedure to construct higher-order Neyman-orthogonal functions below.

3 Estimation based on orthogonalized functions

We now present our estimation approach in the general case where the target parameter

µ0 may be equal to θ0 or may be a different parameter such as an average effect, and

there are multiple, vector-valued nuisance parameters ηi0. We start by formally defining

higher-order Neyman-orthogonality in this general setup and describe estimation based on

higher-order Neyman-orthogonal moment functions. In the next section, we will then show

how to construct such functions.

3.1 Definition of higher-order orthogonality

Let dη be the dimension of η and write η = (η1, . . . , ηdη). For any non-negative integer p

and a vector of integers m = (m1, . . . ,mp) satisfying 1 ≤ ms ≤ dη for all 1 ≤ s ≤ p, define

Dm
η =

∂p

∂ηm1 · · · ∂ηmp

. (3.1)

For a given p, there are dp =
(
dη+p−1

p

)
unique such partial derivatives. Let ∇(p)

η be the

vector operator of dimension dp that collects all these unique partial derivatives of order p.

Finally, let ∇q
η be the vector operator of dimension

∑q
p=1 dp obtained on stacking ∇(p)

η for

p = 1, . . . , q.

Neyman-orthogonality to order q can now be defined as follows (Mackey, Syrgkanis and

Zadik, 2018).

Definition 1. If the function u satisfies

E
[
∇q

η u(Z; θ0, η0, µ0)
]
= 0, (3.2)

for some integer q, then we say that u is Neyman-orthogonal to order q.
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In this definition, all possible partial derivatives of u(Z; θ, η, µ) with respect to η up to

order q have mean zero. Furthermore, Definition 1 is written for a generic function u. In

later applications, we apply it to functions ui that depend on some subsets of observations.

3.2 Estimation

Let µ0 satisfy (2.1) for (possibly vector-valued) functions u1, . . . , uN . We assume that the

ui, for all i = 1, ..., N , are Neyman-orthogonal to order q with respect to ηi, in the sense

of Definition 1. Suppose that we have access to preliminary estimators η̂1, . . . , η̂N of the

nuisance parameters that are independent of the data Z1, . . . , ZN . If ηi0 is defined as the

solution to a moment condition involving the same data, estimation based on sample-

splitting, combined with cross-fitting (see, e.g., Newey and Robins, 2017), can be applied.

When the observations are independent this is conventional. For situations where the

data are dependent, modified sample-splitting strategies are available (see, e.g., Semenova,

Goldman, Chernozhukov and Taddy, 2023).

We estimate µ0 by the GMM estimator

µ̂ = argmin
µ

∥∥∥∥∥
N∑
i=1

ui(Zi; θ̂, η̂i, µ)

∥∥∥∥∥
W

, (3.3)

where W is a chosen symmetric positive-definite matrix, ∥u∥W =
√
u⊤W u, and θ̂ is an

estimator of θ0.

The estimator θ̂ will depend on the problem at hand. If θ0 is defined through a mo-

ment condition of the form
∑N

i=1 E(ũi(Zi; θ0, ηi0)) = 0, for functions ũi that are Neyman-

orthogonal to order q, then our framework can be applied and we can use

θ̂ = argmin
θ

∥∥∥∥∥
N∑
i=1

ũi(Zi; θ, η̂i)

∥∥∥∥∥
W̃

, (3.4)

where W̃ is again a chosen weight matrix. In this case, we may equally combine (3.3) and

(3.4) into a single GMM estimation procedure.

In Section 7, we provide conditions under which this approach yields estimators that

are n−1/2-consistent and asymptotically normal, where n is the total number of observa-
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tions. We will impose two key conditions. The first one is that, although their number

may increase with the sample size, the dimension of each ηi remains bounded as n tends to

infinity. This imposes a suitable sense of sparsity in the relationship between the nuisance

parameters and the outcomes. This condition is trivially satisfied in the panel data and net-

work problems with fixed effects that we consider. The second key condition we impose is

that the convergence rates of the preliminary estimates η̂i be faster than n
−1/2(q+1). This en-

sures that, after having orthogonalized to order q, any remainder terms are asymptotically

negligible.

4 Achieving higher-order Neyman-orthogonality

4.1 Main result

Let u be a moment function, such as one of the ui in (2.1). We now show how to construct

an orthogonalized counterpart of u, which we call u∗q, that is Neyman-orthogonal to order

q, where q ≥ 1 is any arbitrary order.

It is convenient to introduce the Bhattacharyya (1946) basis v1, v2, . . ., where

vp(z; θ, η) =
∇(p)

η ℓ(y |x; θ, η)
ℓ(y |x; θ, η)

.

McLeish and Small (1994) discuss several properties of this basis. One important property

for our purposes is that

Eθ,η(vp(Z; θ; η) |X = x) =

∫
vp(z; θ, η) ℓ(y |x; θ, η) dy = 0 (4.1)

for any p, so all elements of the Battacharryya basis have (conditional) mean equal to zero.

In (4.1), and throughout this section, Eθ,η(· |X = x) denotes the conditional expectation

under ℓ(y |x; θ, η).

The low-order basis functions are familiar from likelihood theory. For example,

v1(z; θ, η) =
∂ log ℓ(y |x; θ, η)

∂η
,

v2(z; θ, η) =
∂ log ℓ(y |x; θ, η)

∂η

∂ log ℓ(y |x; θ, η)
∂η⊤

+
∂2 log ℓ(y |x; θ, η)

∂η∂η⊤
.
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The fact that these functions have mean zero follows from the unbiasedness of the score

and from the information equality, respectively.

Stacking the leading q basis functions, we obtain

wq(z; θ, η) =
∇q

ηℓ(y |x; θ, η)
ℓ(y |x; θ, η)

.

The vectors wq are mean-zero “generalized score functions”.

Next, let us define the matrices

Σwqwq(x; θ, η) = Eθ,η(wq(Z; θ, η)wq(Z; θ, η)
⊤ |X = x),

and

Σwqu(x; θ, η, µ) = Eθ,η(wq(Z; θ, η)u(Z; θ, η, µ)
⊤ |X = x),

which are, respectively, the (conditional) covariance matrix of the first q members of the

Bhattacharrya basis, and the covariance matrix of the same q basis functions with the

vector function u. Finally, let

bq(x; θ, η, µ) = ∇q
η Eθ,η(u(Z; θ, η, µ)

⊤|X = x).

Note that bq is zero when u is the score for θ, i.e., ∂ log ℓ(y |x;θ,η)
∂θ

. In general, however, bq

will be non-zero. Here we assume that u(z; θ, η, µ) and ℓ(y |x; θ, η) are sufficiently often

differentiable in η, and that the expectations in the definitions of Σwqwq , Σwqu, and bq are

well-defined.

The proof of the following result is in Appendix A.

Theorem 1. Suppose that Σwqwq(x; θ, η) is invertible and let

A(x; θ, η, µ) = Σwqwq(x; θ, η)
−1
[
Σwqu(x; θ, η, µ)− bq(x; θ, η, µ)

]
.

Then the function

u∗q(z; θ, η, µ) = u(z; θ, η, µ)− A(x; θ, η, µ)⊤wq(z; θ, η)

satisfies Eθ,η

[
∇q

η u
∗
q(Z; θ, η, µ)

∣∣X = x
]
= 0. This implies that u∗q is Neyman-orthogonal to

order q, as defined above.
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Theorem 1 generalizes the projected-score construction of Small and McLeish (1989) and

Waterman and Lindsay (1996). To see this, consider the case where µ0 = θ0, and u is the

score function for θ. Then bq = 0 and Theorem 1 yields

u∗q(z; θ, η, µ) = u(z; θ, η, µ)−
[
Σwqwq(x; θ, η)

−1Σwqu(x; θ, η)
]⊤

wq(z; θ, η),

which is the projected score of order q.2 However, our result covers other estimating

equations as well as more general parameters of interest, such as average elasticities or

counterfactual quantities.

We remark that Theorem 1 requires the matrix Σwqwq(x; θ, η) to be invertible. In the

standard case of first-order Neyman-orthogonality this corresponds to non-singularity of

the information matrix of the nuisance parameters. For higher-order Neyman-orthogonality

this requirement imposes further restrictions.

Example: CES production function (continued). Consider the team production

model (2.3). Suppose we work with N = n subsets that all contain a single team, and let

ηi = (ηk(i,1), ηk(i,2))
⊤ denote the 2× 1 vector of worker effects in team i. The 2× 2 matrix

Σw1w1(θ, ηs) = Eθ,ηi

(
∂ log ℓ(Yi; θ, ηi)

∂ηi

∂ log ℓ(Yi; θ, ηi)

∂η⊤i

)
is not invertible, as only the sum ηγk(i,1) + ηγk(i,2) can be identified. In our application in

Section 6, we will tackle this issue by combining data on teams of size 2 with single-author

production, and working with subsets i of three teams each.

Example: Fixed-effect probit. Consider the standard binary-choice panel data model

Pθ,ηi(Yij = 1 |Xi) = Φ(ηi +X⊤
ij θ), i = 1, . . . , N, j = 1, . . . , T,

2The projected score was originally developed as a tool to achieve E-ancillarity (Small and McLeish,

1988) and to approximate the conditional score for θ, when the latter exists (Waterman and Lindsay,

1996). The fact that it is Neyman-orthogonal is noted in passing (although a link with Neyman’s work is

not made) but is not exploited. Moreover, unlike the conditional score, the projected score still depends

on η, and it will generally not have improved properties over the score itself. As we highlight here, it is

the combination of higher-order versions of Neyman-orthogonality with sample splitting that allows one to

improve over working with the original score.
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for (conditionally-independent) binary outcomes Yij and covariates Xi = (Xi1, . . . , XiT )
⊤.

It is not difficult to see that the rank of Σwqwq(x; θ, η) is bounded by 2T . As a result,

Σwqwq(x; θ, η) is singular for all q > 2T .

4.2 Intuition and discussion

To gain intuition into the construction in Theorem 1 it is useful to again consider the case

where u is a univariate function, the nuisance parameter is a scalar, and one wishes to

estimate µ0 = θ0 (as in Subsections 2.2 and 2.3).

First-order orthogonality. To relate our approach to the literature consider first q = 1.

Let

u∗1(z; θ, η) = u(z; θ, η)− a1(x; θ, η) v1(z; θ, η),

for some function a1. Note that, by virtue of (4.1), the term involving v1 does not introduce

any bias. We have

∂u∗1(z; θ, η)

∂η
=
∂u(z; θ, η)

∂η
− ∂a1(x; θ, η)

∂η
v1(z; θ, η)− a1(x; θ, η)

∂v1(z; θ, η)

∂η
.

Take conditional expectations and exploit (4.1) to see that

Eθ,η

(
∂u∗1(Z; θ, η)

∂η

∣∣∣∣X = x

)
= 0

if any only if

Eθ,η

(
∂u(Z; θ, η)

∂η

∣∣∣∣X = x

)
− a1(x; θ, η) Eθ,η

(
∂v1(Z; θ, η)

∂η

∣∣∣∣X = x

)
= 0.

This is achieved by setting

a1(x; θ, η) =

(
Eθ,η

(
∂v1(Z; θ, η)

∂η

∣∣∣∣X = x

))−1

Eθ,η

(
∂u(Z; θ, η)

∂η

∣∣∣∣X = x

)
. (4.2)

Iterating expectations shows that the resulting function u∗1 is Neyman-orthogonal to order

q = 1. By the information matrix equality we have

Eθ,η

(
∂v1(Z; θ, η)

∂η

∣∣∣∣X = x

)
= −Eθ,η

(
v1(Z; θ, η)

2
∣∣X = x

)
= −Σw1w1(x; θ, η),
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and

Eθ,η

(
∂u(Z; θ, η)

∂η

∣∣∣∣X = x

)
= −Eθ,η (v1(Z; θ, η)u(Z; θ, η)|X = x) = −Σw1u(x; θ, η),

leading to the representation of the function u∗1 as in the theorem.

The above derivation of (4.2) is well-known. Furthermore, it does not hinge on the

likelihood structure. Indeed, recent work exploiting orthogonality, such as that surveyed

in Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018), does

so in the context of moment conditions. In our setup, as in Neyman’s (1959) original

work, the likelihood setup implies that a1 is known up to the model parameters θ and

η (conditional on the regressors). Outside of this framework, in contrast, a1 needs to be

treated as an additional nuisance parameter. This is possible because, as u∗1 is linear in

a1, it is automatically first-order Neyman-orthogonal to it by virtue of (4.1). This logic,

however, does not extend to higher order, as the implied system of equations becomes

inconsistent, so that no solution exists.

Higher-order orthogonality. It suffices to look at the case q = 2. We again consider

a linear transformation of u, now involving the leading two Bhattacharyya basis functions.

This gives

u∗2(z; θ, η) = u(z; θ, η)−

 a21(x; θ, η)

a22(x; θ, η)

⊤  v1(z; θ, η)

v2(z; θ, η)

 . (4.3)

Taking first-derivatives with respect to the nuisance parameter, and proceeding as in the

first-order case, gives

Eθ,η

(
∂u(Z; θ, η)

∂η

∣∣∣∣X = x

)
=

 a21(x; θ, η)

a22(x; θ, η)

⊤  Eθ,η

(
∂v1(Z;θ,η)

∂η

∣∣∣X = x
)

Eθ,η

(
∂v2(Z;θ,η)

∂η

∣∣∣X = x
)
 .

Solving this equation for a21 for given a22 yields

a21(x; θ, η) = a1(x; θ, η)− c1(x; θ, η) a22(x; θ, η), (4.4)

where a1 is given by (4.2) and

c1(x; θ, η) =

(
Eθ,η

(
∂v1(z; θ, η)

∂η

∣∣∣∣X = x

))−1

Eθ,η

(
∂v2(z; θ, η)

∂η

∣∣∣∣X = x

)
.
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The coefficient c1 has the same form as a1, except that it features v2 instead of u. Moreover,

plugging (4.4) back into (4.3) yields

u∗2(z; θ, η) = u∗1(z; θ, η)− a22(x; θ, η) v
∗
2(z; θ, η),

where v∗2(z; θ, η) = v2(z; θ, η)− c1(x; θ, η) v1(z; θ, η). Note that v∗2 is Neyman-orthogonal to

order 1, that is,

Eθ,η

(
∂v∗2(Z; θ, η)

∂η

∣∣∣∣X = x

)
= 0.

It follows that u∗2 is Neyman-orthogonal to order 1 for any a22. We will now choose a22

such that u∗2 is Neyman-orthogonal to order 2.

Next, differentiating u∗2 with respect to η twice gives

∂2u∗2(z; θ, η)

∂η2
=
∂2u∗1(z; θ, η)

∂η2
+ a22(x; θ, η)

∂2v∗2(z; θ, η)

∂η2

+
∂2a22(x; θ, η)

∂η2
v∗2(z; θ, η) + 2

∂a22(x; θ, η)

∂η

∂v∗2(z; θ, η)

∂η
.

Since v∗2 is orthogonal to order 1, the terms involving the first and second derivative of a22

drop out when taking expectations. It follows that u∗2 in (4.3) is Neyman-orthogonal to

order 2 when one sets a21 to its expression in (4.4), and a22 to

a22(x; θ, η) =

(
Eθ,η

(
∂2v∗2(Z; θ, η)

∂η2

∣∣∣∣X = x

))−1

Eθ,η

(
∂2u∗1(Z; θ, η)

∂η2

∣∣∣∣X = x

)
. (4.5)

Note that this construction amounts to solving a system of linear equations. The fact that

the solution in (4.4)–(4.5) coincides with the expression in Theorem 1 may then again be

verified by using Bartlett identities.

5 Examples

5.1 Panel data models

Consider an N × T panel data model with individual effects. Here, the likelihood factors

across the cross-sectional observations and the likelihood contribution of unit i takes the
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form
T∏

j=1

log f(Yij |Xij; θ0, ηi0).

The maximum-likelihood estimator is well-known to suffer from a bias that is O(T−1); see

Hahn and Newey (2004) and Hahn and Kuersteiner (2011) for derivations of this bias in

static and dynamic models, respectively. Consider the estimation of θ0. The bias in the

estimator comes from bias in the score stemming from estimation noise in the fixed effects.

Taking ηi to be scalar for notational simplicity, and letting η̂i be an estimator of ηi0, an

expansion of the (normalized) score3

ui(Zi; θ0, η̂i)=
1

T

T∑
j=1

∂ log f(Yij|Xij; θ0, η̂i)

∂θ

yields

ui(Zi; θ0, η̂i) =ui(Zi; θ0, ηi0) +
∂ui(Zi; θ0, ηi0)

∂ηi
(η̂i − ηi0) +

1

2

∂2ui(Zi; θ0, ηi0)

∂η2i
(η̂i − ηi0)

2

+ oP (|η̂i − ηi0|2).

Taking expectations and re-arranging shows that

E(ui(Zi; θ0, η̂i)) =cov

(
∂ui(Zi; θ0, ηi0)

∂ηi
, η̂i − ηi0

)
+ E

(
∂ui(Zi; θ0, ηi0)

∂ηi

)
E(η̂i − ηi0)

+
1

2
E
(
∂2ui(Zi; θ0, ηi0)

∂η2i

)
E((η̂i − ηi0)

2) + o(E(|η̂i − ηi0|2)).

If we set η̂i = η̂i(θ0) = argmaxη
∏T

j=1 log f(Yij |Xij; θ0, η), the maximum-likelihood es-

timator given θ0, each one of these terms is O(T−1). If we use an estimator η̂i that is

independent of the data the first term disappears. However, the remaining terms, which

capture the nonlinearity bias and variance in the estimator of ηi0, remain. Hahn and Newey

(2004), Arellano and Hahn (2007), and Dhaene and Jochmans (2015a,b) present estimators

3In this discussion we work with the score divided by T , to facilitate the comparison with the panel

data literature.
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of these terms based on the maximum-likelihood estimator that can be used to construct

a bias-corrected estimator.

Lancaster (2002) and Woutersen (2002) integrate-out the fixed effects using a uniform

prior after orthogonalizing to order 1 to obtain an estimator with bias o(T−1); Arellano

(2003) presents an alternative derivation of the same result. First-order orthogonality, by

itself, does not suffice as it does not handle the third term in the expansion. Moreover, such

an approach does not properly correct for the noise in the estimated fixed effects, yielding

an estimator with a bias that is, at best, of the same order of magnitude as the (uncor-

rected) maximum-likelihood estimator itself. Li, Lindsay and Waterman (2003), building

on Waterman and Lindsay (1996), show that their (second-order) projected score for θ,

when evaluated at η̂i(θ), is a first-order unbiased estimating equation for θ. Thus, here, a

sample-splitting procedure is not needed to achieve bias reduction. This is a consequence

of the (second- or higher-order) projected score being orthogonal to the influence function

of η̂i(θ), as a small calculation will allow to verify. While interesting, this property does

not seem to extend to higher-order projections or to other parameters of interest, such as

average marginal effects.

More generally, with η̂i− ηi0 = OP (T
−1/2), the score admits a higher-order expansion of

the form,

E(ui(Zi; θ0, η̂i)) =
B1

T
+
B2

T 2
+ · · ·+ Bq

T q
+ o(T−q)

for constants B1, B2, . . . , Bq. The maximum-likelihood estimator has B1 ̸= 0, in general,

and so requires that N/T → 0 to be asymptotically unbiased. The approaches to bias

correction mentioned above remove B1 but not the remaining terms. Approaches that

estimate and subsequently remove all Bp, 1 ≤ p ≤ 1, are given by Dhaene and Jochmans

(2015a,b). Likewise, an estimator based on Neyman-orthogonalization, combined with a

sample-splitting estimator that uses preliminary estimators that satisfy η̂i−ηi0 = OP (T
−1/2)

can be used to obtain the same result.
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Example: Neyman-Scott model (continued). Recall that the (un-normalized) unit-

specific score for σ2 is

ui(Yi;σ
2, ηi) = − T

2σ2
+

1

2σ4

T∑
j=1

(Yij − ηi)
2.

The leading two elements of the Bhattacharyya basis for ηi are

vi,1(Yi;σ
2, ηi) =

T∑
j=1

Yij − ηi
σ2

, vi,2(Yi;σ
2, ηi) = − T

σ2
+

(
T∑

j=1

Yij − ηi
σ2

)2

.

We apply Theorem 1. A small calculation yields A(σ2, ηi) = (0, 1/2T)⊤ and, after re-

arranging,

u∗i,2(Yi;σ
2, ηi) =

1

2σ2

(∑T
j=1(Yij − Y i)

σ2
− (T − 1)

)
,

which does not depend on ηi. Summing over the cross-sectional units gives the second-order

orthogonalized score equation for σ2 as

N∑
i=1

u∗i,2(Yi;σ
2, ηi) =

1

2σ2

(∑N
i=1

∑T
j=1(Yij − Y i)

σ2
−N(T − 1)

)
= 0,

which yields the degrees-of-freedom corrected estimator σ̂2 in (2.9).

Another parameter of interest in this problem would be µ = 1/N
∑N

i=1 η
2
i . This fits our

framework with

ui(Yi;σ
2, ηi, µ) = η2i − µ.

Here, the solution to the second-order orthogonalized moment equation for a given σ2 is

1/N
∑N

i=1 Y
2

i −σ2/T . An unbiased estimator based on this equation then is 1/N
∑N

i=1 Y
2

i − σ̂2/T .

To complement this example we consider in Appendix B the normal regression model

Yi = X⊤
i ηi0 + εi, εi |X ∼ iid N (0, σ2

0), (5.1)

and show that second-order Neyman-orthogonalization similarly delivers exactly unbiased

estimators of σ2
0, and of quadratic forms in η10, . . . , ηN0.
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Example: Linear autoregression. As another panel data example we provide results

for the linear autoregressive model

Yij = ηi0 + ρ0Yi,j−1 + εij, εij ∼ iid N (0, σ2
0).

Here θ = (ρ, σ2)⊤. We focus on ρ, since the analysis for σ2 is similar to the previous

example. The score for ρ for unit i, conditional on the first observation, is

ui(Yi; θ, ηi) =
T∑

j=1

Yi,j−1(Yij − ηi − ρYi,j−1)

σ2

while

vi,1(Yi; θ, ηi) =
T∑

j=1

(Yij − ηi − ρYi,j−1)

σ2
, vi,2(Yi; θ, ηi) = − T

σ2
+

(
T∑

j=1

(Yij − ηi − ρYi,j−1)

σ2

)2

.

We find

A(θ, ηi) = (ηi, σ
2/T)⊤ c(ρ), c(ρ) =

1

1− ρ

(
1− 1

T

1− ρT

1− ρ

)
.

After some re-arrangement we obtain that the second-order Neyman-orthogonalized score

equation takes the form∑N
i=1

∑T
j=1 Yi,j−1(Yij − ηi − ρYi,j−1)

σ2
+Nc(ρ) +NTc(ρ) η̂i(ρ)(ηi − η̂i(ρ)),

where η̂i(ρ) = Y i − ρY i− with Y i = 1/T
∑T

j=1 Yij and Y i− = 1/T
∑T

j=1 Yi,j−1. This equation

still depends on the ηi. However, at ηi = η̂i(ρ) we obtain the adjusted score equation of

Lancaster (2002) and Dhaene and Jochmans (2016), which is known to be exactly unbiased

for any T ≥ 2.

5.2 Nonlinear network regression

Our next example is the nonlinear regression model with S ≥ 1 outcomes,

Yi = m(Xi; θ0, ηi0) + σ(Xi; θ0)εi, εi |X ∼ iid N (0, Id), (5.2)

wherem(x; θ, ηi) is a d×1 vector, σ(x; θ) is an d×d diagonal matrix, andm and σ are known

functions. We will show below that our CES production function example, in logarithms,

fits into this framework.
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For this model there are no analytical solutions for the orthogonalized estimators. We

thus proceed numerically. To construct Neyman-orthogonal moment functions according

to Theorem 1 we need to compute Σwqwq(x; θ, η), Σwqu(x; θ, η, µ), and bq(x; θ, η, µ), which

involve higher-order derivatives of the conditional likelihood. To compute these derivatives,

it is convenient to introduce the operator ∇q
m that collects all derivatives with respect to

m up to order q. By the chain rule,

∇q
ηi
ℓ(y |x; θ, ηi) =M(x, θ, ηi)∇q

mℓ(y |x; θ, ηi),

where the matrix M has an analytical expression given by the multivariate Faà di Bruno

formula (Constantine and Savits, 1996). Given the matrix M it is easy to compute Σwqwq ,

Σwqu, and bq. For example,

Σwqwq(x; θ, ηi)

=M(x, θ, ηi)Eθ,ηi

(
∇q

mℓ(Yi |Xi; θ, ηi)

ℓ(Yi |Xi; θ, ηi)

∇q
mℓ(Yi |Xi; θ, ηi)

ℓ(Yi |Xi; θ, ηi)

⊤
∣∣∣∣∣Xi = x

)
M(x, θ, ηi)

⊤,

where the expectation on the right-hand can be readily computed by relying on formulas

for moments of Hermite polynomials. We relegate further details to Appendix C. In the

next section we present simulations and an empirical application based on a version of (5.2)

designed to study team production.

Example: CES production function (continued). Consider the team production

model

Yj = β0(sj)

(
1

sj

sj∑
r=1

η
γ0(sj)

k(j,r)0

) 1
γ0(sj)

ε
σ0(sj)
j , log εj | K ∼ iid N (0, 1) , (5.3)

where sj is the size of team j = 1, ..., n, (k(j, 1), . . . , k(j, sj)) are the sj workers in team j,

and the set K = {k(j, r) : r = 1, . . . , sj, j = 1, . . . , n} collects the workers in all teams.

Model (5.3) generalizes Model (2.3) by allowing for teams of varying sizes. Here we focus

on teams of size 1 and 2, as in our application, and impose the normalization β0(1) = 1.

For simplicity we will denote β0 = β0(2) and γ0 = γ0(2), which are the team size and

substitution parameters, respectively, in teams of size 2.
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We now explain how (5.3) can be written as a special case of (5.2), for a suitable choice

of subsets of observations. To any team j of size 2 involving workers k and k′, we associate

a team j1(j) of size 1 only involving worker k, and a team j2(j) of size 1 only involving

worker k′. This construction results in N subsets of three teams each. We then write the

outcomes for these three teams, in logarithms, as

log Yj = log β0 +
1

γ0
log

(
ηγ0k(j,1)0 + ηγ0k(j,2)0

2

)
+ σ0(2) log εj, (5.4)

log Yj1(j) = log ηk(j,1)0 + σ0(1) log εj1(j), (5.5)

log Yj2(j) = log ηk(j,2)0 + σ0(1) log εj2(j), (5.6)

which takes the same form as (5.2), for d = 3, θ = (β0, γ0, σ
2
0(1), σ

2
0(2))

⊤
, Yi the vector of

the three outcomes in (5.4)–(5.6) for subset i, and ηi0 the 2 × 1 vector of worker-specific

effects in the corresponding teams.

6 Application to team production

6.1 Model, data, and implementation

We wish to estimate the parameters of the team production model in (5.4)–(5.6). We will

be especially interested in estimating the substitution parameter γ, which drives the nature

of complementarities in the team of size 2, and the team size parameter β, which reflects

the premium (or penalty) associated with working together relative to working alone. In

addition to estimating production-function parameters, we will also report estimates of

a counterfactual random re-allocation of workers to teams. Under random assignment,

average output in teams of size 2 can be written as

Erand(Yj) =
2

n2(n2 − 1)

∑
k1<k2

β0

[
1

2
(ηk10

γ0 + ηk20
γ0)

] 1
γ0

exp

(
1

2
σ2
0(2)

)
, (6.1)

where n2 denotes the number of teams of size 2. As this quantity is an average over the

worker fixed effects, it can be orthogonalized with respect to them using our approach.
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Ahmadpoor and Jones (2019) consider model (5.3) without the error term εj. Here our

goal is to address the statistical challenge caused by the presence of a large number of pos-

sibly imprecisely estimated fixed effects. An alternative would be to specify a distribution

for author heterogeneity conditional on the team network (i.e., for all the ηi0’s conditional

on K), as in Bonhomme (2021). An advantage of such a procedure would be that, under

correct specification, estimates are consistent even in poorly connected networks. This

random-effect approach requires, however, to model how authors sort and collaborate in

teams. Our approach avoids the need to do so. On the other hand, a fixed-effect approach

requires that the author effects can be consistently estimated. In less well-connected net-

works, the convergence rate will be slower. Orthogonalization to a higher-order allows us

to reduce the impact of estimation noise.

We look at the production of academic work on economics. We use data from Ductor,

Fafchamps, Goyal and Van der Leij (2014), drawn from the EconLit database. These data

contain a large collection of articles, indicated by their ID, together with author identifiers

and a measure of journal quality proposed by Kodrzycki and Yu (2006). This measure is

a ranking between 0 and 100, which we net of multiplicative time effects and will use as

our outcome variable. We restrict the sample to articles published between 1990 and 1999,

written either alone or with a single co-author. We only include authors who produced at

least two sole-authored articles during the sampling period.

Our sample contains 91,626 articles, 10% of which are co-authored, and 16,408 authors.

Average journal quality differs greatly across authors, with the 10th percentile of the quality

measure being 0.4, the median being 0.9, and the 90th percentile being 8.5. The between-

author variance in journal quality is 42% of the overall variance. The distribution of journal

quality, in turn, is skewed to the right, with a median of 0.6, a 90th percentile of 12, and

a 99th percentile of 52. The number of publications per author varies substantially, with a

10th percentile of 2, a median of 4, and a 90th percentile of 13.

To implement our approach, we construct subsets of three papers, one co-authored (j)

and two sole-authored (j1(j), j2(j)), as described in (5.4)–(5.6). The score for θ based on

subset i then involves the three teams j, j1(j), and j2(j). Proceeding in this way is helpful
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as it limits the dimension of the parameter ηi to two. This is not only in line with the

assumptions we make in deriving asymptotics, but also helpful in terms of computation.

Moreover, it reduces the number of derivatives that need to be computed. The number of

derivatives nevertheless remains substantial, as we need to compute 9 derivatives at order

2, 19 at order 3, and 55 at order 5, for example. Yet, using the computational remarks

from Section 5.2, this can be implemented quite fast.

Finally, we exploit the network structure of the data to perform our sample splitting.

For every worker, we construct a preliminary estimator of her fixed effect (in logs) as the

average quality of her single-authored papers, except for one that we select at random and

use later in estimation. This strategy is feasible due to our sample restriction. For each

subset i of three teams, we then stack the two worker fixed effects together to form our

preliminary estimate η̂i. We next estimate the parameters β0(2), γ0(2), σ
2
0(1), σ

2
0(2) on the

sample from which all these single-authored articles have been removed. In the present

case, ũi in (3.4) has four components that correspond to the score with respect to all the

parameters, and the weight matrix W̃ is irrelevant since the problem is just-identified. In

order to limit the variability due to the choice of split, we average parameter estimates

across 100 random splits, through cross-fitting. The bias in the parameter estimates takes

a complex form due to the team network environment. In Appendix D we assess the ability

of our orthogonalization approach to alleviate this bias in a Monte Carlo simulation.

6.2 Empirical estimates

Table 1 shows the estimates of β0, γ0, σ
2
0(2), and σ

2
0(1) for various estimators. These are

the plug-in estimator based on the preliminary estimates η̂i and six estimators based on

Neyman-orthogonalized moments, for 1 ≤ q ≤ 6. In addition to point estimates, we report

estimated standard errors based on the parametric bootstrap.4

Starting with the substitution parameter γ, the uncorrected estimate is 0.12, which is

4Bootstrap replications are based on Neyman-orthogonalized estimates of β0, γ0, σ
2
0(2), and σ2

0(1) to

order q = 6, together with the sample-split estimates η̂i of author effects. Within each bootstrap replication,

we cross-fit the estimates 10 times. Results are based on 200 bootstrap replications.
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Table 1: Estimation results

Substitution γ Team size β Variance σ2(2) Variance σ2(1)

Plug-in 0.1233
(0.0466)

1.2890
(0.0217)

1.6230
(0.0249)

1.6404
(0.0204)

q = 1 −1.9979
(0.2123)

1.3344
(0.0279)

1.6797
(0.0264)

1.7379
(0.0265)

q = 2 0.7268
(0.2367)

1.3046
(0.0359)

1.4341
(0.0260)

1.4679
(0.0260)

q = 3 0.4467
(0.2034)

1.2936
(0.0369)

1.4399
(0.0254)

1.4423
(0.0236)

q = 4 0.3976
(0.1763)

1.2931
(0.0362)

1.4346
(0.0254)

1.4238
(0.0232)

q = 5 0.3947
(0.1730)

1.2930
(0.0361)

1.4328
(0.0254)

1.4209
(0.0231)

q = 6 0.3944
(0.1770)

1.2930
(0.0365)

1.4316
(0.0254)

1.4194
(0.0230)

Notes: Point estimates based on q-ordered orthogonalized estimators, cross-fitted estimates (100 splits).

Parametric bootstrap standard errors in parentheses (200 replications).

close to the Cobb-Douglas case. The value of the first-order Neyman-orthogonalized esti-

mate is quite different. However, since the preliminary estimates of the author fixed effects

are based on very few observations, we do not expect this estimator to adequately correct

for bias. This is confirmed by the fact that all other Neyman-orthogonalized estimates,

for q ∈ {2, . . . , 6}, range between 0.39 and 0.73, which is higher than the plug-in estimate,

and very different from the first-order orthogonalized estimate. Relative to the plug-in, the

orthogonalized estimates with q ≥ 2 all indicate somewhat less complementarity between

authors in team production. Notice the stability of estimates for larger values of q. A sub-

stitution parameter γ = 0.4 corresponds to the case of imperfect complements; see Figure

1 for a graphical illustration.

Turning to the other parameters, the estimates of the team size parameter β are virtually

unaffected by the orthogonalization. This suggests the bias is limited for this parameter.

Its value is close to 1.3, implying that producing a paper with a co-author increases the

paper’s quality to some extent. Next, the log-error variance σ2(2) in teams of two coauthors
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Figure 1: Production function estimate
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Notes: Worker 1’s type η1 on the x-axis, average output Yj on the y-axis. Each curve corresponds to a

different worker 2’s type η2. Figure based on the point estimates for q = 6 reported in Table 1.

is larger when using plug-in estimates (1.6) than when using orthogonalization with q ≥ 2

(1.4), suggesting that the plug-in and first-order corrected estimates are biased upward.

Lastly, the variance σ2(1) in teams of a single author is also larger under the plug-in

estimator.

Model (5.3) implies some restrictions on the parameters γ, β, σ2(1), σ2(2) that do not

depend on the author-specific effects ηi. In Appendix E we exploit two types of restrictions

as robustness checks. Our findings suggest that, while those restrictions seem broadly

consistent with the higher-order orthogonalized estimates reported in Table 1, using them

directly for estimation may lead to very imprecise estimates.

Lastly, we report estimates of average journal quality in a counterfactual scenario where

authors are randomly assigned across teams of two co-authors, see (6.1). The first column

in Table 2 shows estimates of the average output in the empirical allocation. This quantity

can be estimated without bias as the sample mean of the journal quality variable, which

is equal to 7.0. We see that the plug-in estimate is 8.4, larger than the empirical value. In

comparison, Neyman-orthogonalized estimates for q ≥ 3 range between 6.2 and 7.4, and

estimates for q = 5 and q = 6 are closest to the empirical value. The second column in
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Table 2: Empirical estimates: average output

Average output Counterfactual

Plug-in 8.4374
(0.2492)

7.1965
(0.1949)

q = 1 6.8469
(0.4837)

5.3147
(0.3936)

q = 2 9.0756
(0.5096)

8.5805
(0.7626)

q = 3 6.1566
(0.4452)

5.4774
(0.4354)

q = 4 7.4414
(0.4726)

6.6378
(0.6227)

q = 5 6.9854
(0.3889)

6.1694
(0.3896)

q = 6 7.1255
(0.3194)

6.3318
(0.4225)

Notes: Average output (the value in the data is 6.9995, standard error 0.2309), and counterfactual

average output in a random allocation. Point estimates based on orthogonalized estimators to order q,

cross-fitted estimates (100 splits). Parametric bootstrap standard errors in parentheses (200 replications).

Table 2 shows estimates of average article quality under random assignment of authors to

teams, using the plug-in method and Neyman-orthogonalized estimates to order q ≥ 1.5

The estimates vary with the order of orthogonalization. When taking q ≥ 4, estimates

range between 6.2 and 6.6. In addition, comparing the two columns of Table 2 shows that,

irrespective of the order of orthogonalization, the estimates of average output are lower in

the counterfactual scenario where workers are randomly allocated across teams.

The main takeaway from Table 2 is that randomly allocating authors among teams

would tend to lower average paper quality. This is due to two economic forces. The first

one is complementarity in production, as reflected by estimates of γ lower than 1. The

second force is positive sorting. Indeed, the preliminary estimates of worker fixed effects

are positively correlated within teams in the data. In the presence of complementarity,

5To speed up computation, we approximate (6.1) using a random subset of 1000 authors, for each

random sample split (and each bootstrap replication).

29



decreasing assortative matching leads to lower output, which is what we find in Table 2.

7 Asymptotic properties

In this section, we show that, under higher-order orthogonality, the estimators θ̂ and µ̂

introduced in Section 3.2 are
√
n-consistent and asymptotically normal under appropriate

assumptions, even if the convergence rate of η̂i is slower than
√
n. We focus on deriving the

asymptotic distribution of µ̂, assuming that we have already worked out the corresponding

asymptotic result of θ̂. However, the corresponding theory for θ̂ is actually a special case

of our results for µ̂, where θ is dropped from the arguments, µ is replaced by θ, and ui are

replaced by ũi. Thus, our focus on µ̂ is without loss of generality.

7.1 Notation

For the presentation of the asymptotic theory, it is useful to be explicit about which pa-

rameters depend on the sample size and which ones do not. Recall that n is the total

number of observations in (Z1, ..., ZN), where each Zi comprises ni observations. In the

asymptotic sequence, we let N and ni depend on n, although we do not explicitly indicate

this dependence. For example, in a panel data model, our assumptions allow both N and

T to grow as the number NT of observations tends to infinity.

To indicate the dependence on the sample size, we will write ηn and µn instead of η

and µ in this section. While the dimension of µ is not changing with n, the true parameter

µ0,n is implicitly defined as the solution of
∑N

i=1 Eθ0,η0,n (ui(Zi; θ0, η0,n,i, µ)) = 0, which may

depend on n as well. By contrast, the parameter θ and its true value θ0 are independent

of n.

Remember also that n =
∑N

i=1 ni, and note that if the observations within each

unit i are independent, then we have ℓ(yi |xi; θ, ηn,i) =
∏ni

j=1 ℓ(yij |xij; θ, ηn,i). Hence, if
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ui(Zi; θ, ηn,i) =
∂ log ℓ(yi |xi;θ,ηn,i)

∂θ
and uij(Zij; θ, ηn,i) =

∂ log ℓ(yij |xij ;θ,ηn,i)

∂θ
, then

ui(Zi; θ, ηn,i) =

ni∑
j=1

uij(Zij; θ, ηn,i).

More generally, whenever ni → ∞ we expect that ui scales linearly with ni, implying that

1
n

∑N
i=1 ui is the correctly-scaled sample average of ui, and also explaining the scaling of

various other terms in Assumption 1 below.

7.2 A useful lemma

With this notation in hand, we now state our first assumption.

Assumption 1.

(i) We have
[
1
n

∑N
i=1

∂u⊤
i (Zi;θ̂,η̂n,i,µ̂n)

∂µ

]
W
[

1√
n

∑N
i=1 ui(Zi; θ̂, η̂n,i, µ̂n)

]
= oP (1), for some

non-random symmetric positive definite weight matrix W .

(ii) As n→ ∞, (θ̂, η̂n, µ̂n) is contained in some convex neighborhood Bn of (θ0, η0,n, µ0,n).

Let Bn,i be the convex neighborhood of (θ0, η0,n,i, µ0,n) obtained by intersecting Bn with

the parameter parameter subspace for observation i.

(iii) maxi dim(ηn,i) = O(1).

(iv) For every i, the function ui(Zi, θ, ηn,i, µ) is (q + 1) times continuously differentiable

in the parameters (θ, ηn,i, µ), and we assume that for all its components all the partial

derivatives of ui(Zi; θ, ηn,i, µ) up to order (q + 1) are bounded in absolute value by

niCn,i(Zi) ≥ 0, uniformly in the neighborhood Bn,i, such that 1
n

∑N
i=1 niE [Cn,i(Zi)

2] =

O(1).

(v) µ̂n − µ0,n = oP (1) and
1
n

∑N
i=1 niE

(
∥η̂n,i − η0,n,i∥2(q+1)

)
= o(n−1).

(vi) θ̂ = θ0 +
1
n

∑N
i=1 ψn,i + oP (n

−1/2), where E(ψn,i) = 0 and 1
n

∑N
i=1 E

(
∥ψn,i∥2

)
= O(1).
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(vii) The probability limits

Gµ = plim
n→∞

1

n

N∑
i=1

∂ui(Zi; θ0, η0,n,i, µ0,n)

∂µ⊤ , Gθ = plim
n→∞

1

n

N∑
i=1

∂ui(Zi; θ0, η0,n,i, µ0,n)

∂θ⊤

exist, and rank(Gµ) = dim(µ).

Part (i) in Assumption 1 is satisfied if µ̂n is computed using GMM, see (3.3). In Part (ii),

the neighborhood Bn depends on the sample size n, partly because the number of nuisance

parameters of ηn,i generally depends on n. Part (iii) assumes that the maximal dimension

of ηn,i is bounded as n → ∞. Part (iv) requires the derivatives of the moment functions

(properly rescaled) to be suitably bounded. The first half of Part (v) is a high-level consis-

tency assumption for µ̂n, which can be justified by guaranteeing that the objective function

in (3.3) converges uniformly to a population counterpart that has a unique minimum at

µ0. The second half of Part (v) is the rate requirement on the preliminary estimates η̂n,i,

imposing a rate faster than n−1/2(q+1). Part (vi) requires θ̂ to be asymptotically linear, in

particular requiring θ̂ − θ0 = OP (n
−1/2). In the case where µn,0 = θ0 this condition is not

needed. Lastly, Part (vii) assumes existence of Jacobian matrices and a rank condition.

In the statement of the following lemma, Dm
ηn,i

denote the derivative operator with

respect to ηn,i.

Lemma 1. Under Assumption 1 we have

√
n (µ̂n − µ0,n)

= −
(
G⊤

µ W Gµ

)−1
G⊤

µ W

{
1√
n

N∑
i=1

[
ui(Zi; θ0, η0,n,i, µ0,n) +Gθ ψn,i

]
+Rn

}
+ oP (1),

where

Rn =
1√
n

N∑
i=1

∑
m∈Kq,n,i

1

m!

[
Dm

ηn,i
ui(Zi; θ0, η0,n,i, µ0,n)

]
(η̂n,i − η0,n,i)

m ,

and Kq,n,i =
{
m ∈ Zdim(ηn,i) : 1 ≤

∑dim(ηn,i)
r=1 mr ≤ q

}
.
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7.3 Main result

We are now in position to establish the main result of this section, which concerns root-n

consistency and asymptotic normality of estimators based on orthogonal equations. For

this, we first state our second assumption.

Assumption 2.

(i) The moment functions ui(Zi; θ, ηn,i, µ) are Neyman-orthogonal to order q for all i,

and
∑N

i=1 E (ui(Zi; θ0, η0,n,i, µ0,n)) = 0.

(ii) η̂n,i are independent of (Z1, . . . , ZN) for all i.

(iii) The Z1, . . . , ZN are independent across i.

(iv) ξn,i = ui(Zi; θ0, η0,n,i, µ0,n)+Gθ ψn,i satisfies Lindeberg’s condition,
6 and the following

probability limit exists:

Vξ = plim
n→∞

1

n

N∑
i=1

Var (ξn,i) .

Part (i) in Assumption 2 requires ui to be Neyman-orthogonal in the sense of Definition

1. Part (ii) requires the preliminary estimates to be independent from the estimation

sample. With independent observations, this can be achieved by sample splitting. Part

(iii) imposes independence between the Zi’s. We impose this assumption to simplify the

presentation. It is straightforward to modify the variance expression in Theorem 2 below

to account for particular forms of dependence (e.g., clustered) by using an appropriate

expression for the matrix Vξ introduced in Part (iv).

The following theorem provides an asymptotic characterization of µ̂n.

Theorem 2. Let Assumptions 1 and 2 hold with the same value of q ∈ {1, 2, 3, . . .}. Then

we have

√
n (µ̂n − µ0,n)

d→ N
(
0,
(
G⊤

µ W Gµ

)−1
G⊤

µ W VξWGµ

(
G⊤

µ W Gµ

)−1 )
.

6That is, for any ϵ > 0, 1
s2n

∑N
i=1 E

[
ξ2n,i · 1(|ξn,i| > ϵsn)

]
→ 0 as n → ∞, where s2n =

∑N
i=1 Var(ξn,i)

and 1 is the indicator function.
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8 Final remarks

In this paper we show how to construct higher-order Neyman-orthogonal moment functions

in conditional-likelihood models. We use these functions, together with sample splitting,

to reduce bias in estimation. Our application suggests that our higher-order corrections

can be effective in network settings with fixed effects. There are several important avenues

for future work. An area of application is to double/debiased machine learning with fixed

effects, where the nuisance parameters contains some components, such as low-dimensional

functions, for which first-order orthogonality may suffice. An open question is how to

choose the degree q of orthogonality in practice. Finally, extending the approach to non-

likelihood models is important, and we are working on a strategy that relies on independence

assumptions and sample splitting.
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APPENDIX

A Proofs

A.1 Proof of Theorem 1

Before proving the theorem, it is useful to establish the following lemma.

Lemma 2. Let q ∈ {1, 2, 3, . . .}, and let x be some realization of the covariates. Remember

that ∇q
η and wq(z; θ, η) are vectors of dimension kq =

∑q
p=1 dp, and that Σwqwq(x; θ, η) is a

kq × kq matrix. We assume that Σwqwq(x; θ, η) is invertible, and we define

w̃q(z; θ, η) = Σwqwq(x; θ, η)
−1wq(z; θ, η).

Then,

Eθ,η

[
(∇q

η)
⊤ w̃q(z; θ, η)

∣∣X = x
]
=



−Id1 0 0 · · · 0

0 +Id2 0 · · · 0

0 0 −Id3 · · · 0
...

...
...

. . .
...

0 0 0 · · · (−1)q Idq


, (A.1)

where the diagonal kq × kq matrix on the right hand side is obtained by stacking (−1)p Idp
on the diagonal for p = 1, . . . , q, and Idp is the identity matrix of dimensions dp.

Proof of Lemma 2. By taking derivatives of
∫
ℓ(y|x; θ, η)dy = 1 with respect to η, we

obtain ∫
[∇q

ηℓ(y|x; θ, η)]dy = 0,

which can also be written as Eθ,η[wq(Z; θ, η)|X = x] = 0. Since Σwqwq(X; θ, η) does not

depend on Y we also have Eθ,η[w̃q(Z; θ, η)|X = x] = 0. Using this and the definition of w̃q
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we obtain

Ikq = Σwqwq(x; θ, η)
−1Σwqwq(x; θ, η)

= Σwqwq(x; θ, η)
−1Eθ,η[wq(Z; θ, η)wq(Z; θ, η)

⊤|X = x]

= Eθ,η[w̃q(Z; θ, η)wq(Z; θ, η)
⊤|X = x]

=

∫
w̃q(z; θ, η)[∇q

ηℓ(y|x; θ, η)]⊤dy. (A.2)

According its definition in Section 3.1, the elements of the kq-vector operator ∇q
η are given

by

Dm
η =

∂p

∂ηm1 · · · ∂ηmp

,

and are uniquely labeled by vectors of integers m = (m1, . . . ,mp) of length p ∈ {1, . . . , q}

in the following set

Cq =
⋃

p∈{1,...,q}

{m = (m1, . . . ,mp) : 1 ≤ m1 ≤ · · · ≤ mp ≤ dη}.

Analogously, we now introduce the notation w̃m
q (z; θ, η), m ∈ Cq, to uniquely denote the

elements of the vector w̃q(z; θ, η), which is also a vector of length kq = |Cq|. With that

notation, the result in display (A.2) can equivalently be written as

∀r,m ∈ Cq :
∫
w̃ r

q (z; θ, η) [D
m
η ℓ(y|x; θ, η)] dy = 1{r = m}. (A.3)

Since Eθ,η[w̃q(Z; θ, η)|X = x] = 0, we also have∫
w̃ r

q (z; θ, η) ℓ(y|x; θ, η) dy = 0.

For the empty vector () of length zero we have D
()
η ℓ(y|x; θ, η) = ℓ(y|x; θ, η). Using this

notation we can combine the result in the last two displays to find that for all r ∈ Cq and

all v ∈ Cq ∪ {()} we have∫
w̃ r

q (z; θ, η) [D
v
ηℓ(y|x; θ, η)] dy = 1{r = v}.

For k ∈ {1, 2, 3, . . .}, vector t = (t1, . . . , tk) ∈ Cq, and a subset S ⊆ {1, . . . , k}, let tS denote

the vector formed by keeping only the indices in S, and let t−S = t{1,...,k}\S be the vector of
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the remaining elements. Then, by applying Dt
η to the last display and using the product

rule for differentiation we obtain∑
S⊆{1,...,k}

∫
[DtS

η w̃
r
q (z; θ, η)] [D

t−S
η Dv

ηℓ(y|x; θ, η)] dy = 0. (A.4)

Of course, we have Dt
ηD

v
η = D

(t,v)
η , and instead of distinguishing between t and v we can

also just write m for (t, v) combined. The last display equation then implies that for any

nonempty subset T ⊆ {1, 2, . . . , |m|} we have (just set t = mT and v = m−T in the last

display result—in doing so, it was important that above we allowed for v to be the empty

vector): ∑
S⊆T

∫
[DmS

η w̃ r
q (z; θ, η)] [D

m−S
η ℓ(y|x; θ, η)] dy = 0.

Now, consider the following linear combination of the result in the last display,∑
T⊆{1,2,...,|m|}

T ̸=∅

(−1)|T |
∑
S⊆T

∫
[DmS

η w̃ r
q (z; θ, η)] [D

m−S
η ℓ(y|x; θ, η)] dy = 0. (A.5)

For a fixed S ⊂ {1, 2, . . . , |m|}, the total coefficient of the term
∫
[DmS

η w̃ r
q ] [D

m−S
η ℓ] dy in

this linear combination is given by

∑
T :S⊆T⊆{1,...,|m|}

T ̸=∅

(−1)|T | =


−1 if S = ∅,

(−1)|m| if S = {1, . . . , |m|},

0 otherwise.

(A.6)

To see that the result in the last display holds, notice first that for S = ∅ the sum is simply∑
T : ∅⊆T⊆{1,...,|m|}

(−1)|T | = −1 +
∑

T⊆{1,...,|m|}

(−1)|T |

︸ ︷︷ ︸
=0

= −1,

where
∑

T⊆{1,...,|m|}(−1)|T | =
∑|m|

r=0

(|m|
r

)
(−1)r = (1 − 1)|m| = 0 is a classic alternating sum

result, which holds for all |m| ≥ 1. Next, for S = {1, . . . , |m|}, the left hand side of (A.6)

only sums over one element, T = {1, . . . , |m|}, and we thus get (−1)|T | = (−1)|m| for the
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sum. Finally, if S ̸= ∅ and S ̸= {1, . . . , |m|}, then the left hand side of (A.6) can be written

as ∑
T :S⊆T⊆{1,...,|m|}

(−1)|T | =
∑
R⊆−S

(−1)|S|+|R| = (−1)|S|
∑
R⊆−S

(−1)|R|

︸ ︷︷ ︸
=0

= 0

where we replaced the sum over T by a sum over R such that T = S ∪ R, with −S =

{1, . . . , |m|} \ S, and in the final step we used the alternating sum result again.

Using (A.6), our linear combination in (A.5) equals

−
∫

[Dm
η w̃

r
q (z; θ, η)] ℓ(y|x; θ, η) dy + (−1)|m|

∫
w̃ r

q (z; θ, η)[D
m
η ℓ(y|x; θ, η)] dy = 0.

Together with (A.3) we thus find∫
[Dm

η w̃
r
q (z; θ, η)] ℓ(y|x; θ, η) dy = (−1)|m|

1{r = m}.

which in vector notation can be written as (A.1).

Proof of Theorem 1. Define cq(x; θ, η, µ) =
[
Σwqu(x; θ, η, µ)− bq(x; θ, η, µ)

]⊤
. In the

proof of Lemma 2 we introduced the notation w̃m
q (z; θ, η), m ∈ Cq, for the elements of

the kq-vector w̃q(z; θ, η). Analogously, we now use cmq (x; θ, η, µ) to denote the columns of

the the (dimu)× kq-matrix c(x; θ, η, µ), that is, cmq (x; θ, η, µ) is a (dimu)-vector for every

m ∈ Cq. We have

cmq (x; θ, η, µ) = Eθ,η

[
Dm

η ℓ(y |x; θ, η)
ℓ(y |x; θ, η)

u(Z; θ, η, µ)

∣∣∣∣∣X = x

]
−Dm

η Eθ,η(u(Z; θ, η, µ)|X = x)

=

∫
[Dm

η ℓ(y |x; θ, η)]u(z; θ, η, µ)dy −Dm
η

∫
ℓ(y |x; θ, η)u(z; θ, η, µ)dy

= −
∑

S⊊{1,...,|m|}

∫
[DmS

η ℓ(y |x; θ, η)][Dm−S
η u(z; θ, η, µ)]dy, (A.7)

where z = (y, x) and in the last step we applied the product rule for differentiation as

in (A.4) above, but the term for S = {1, . . . , |m|} cancels with the term that stems from

Σwqu(x; θ, η, µ), which explains why we only sum over subsets S that are different from

{1, . . . , |m|}.

42



Next, by the definition of u∗q and A(x; θ, η, µ), we have

u∗q(z; θ, η, µ) = u(z; θ, η, µ)− A(x; θ, η, µ)⊤wq(z; θ, η)

= u(z; θ, η, µ)−
[
Σwqu(x; θ, η, µ)− bq(x; θ, η, µ)

]⊤
w̃q(z; θ, η)

= u(z; θ, η, µ)−
∑
v∈Cq

cvq(x; θ, η, µ) w̃
v
q (z; θ, η).

Let m ∈ Cq. Applying the operator Dm
η to the last equation and again using the product

rule for differentiation in the same way as before, we find

Dm
η u

∗
q(z; θ, η, µ) = Dm

η u(z; θ, η, µ)−
∑

S⊆{1,...,|m|}

∑
v∈Cq

[
Dm−S

η cvq(x; θ, η, µ)
] [
DmS

η w̃ v
q (z; θ, η)

]
.

Applying the conditional expectation operator to this and using Lemma 2 we obtain

Eθ,η

[
Dm

η u
∗
q(Z; θ, η, µ)

∣∣X = x
]

= Eθ,η

[
Dm

η uq(Z; θ, η, µ)
∣∣X = x

]
−

∑
S⊆{1,...,|m|}

∑
v∈Cq

[
Dm−S

η cvq(x; θ, η, µ)
]
Eθ,η

[
DmS

η w̃ v
q (Z; θ, η)

∣∣X = x
]︸ ︷︷ ︸

=(−1)|S| 1{mS=v}

= Eθ,η

[
Dm

η uq(Z; θ, η, µ)
∣∣X = x

]
−

∑
∅≠S⊆{1,...,|m|}

(−1)|S|
[
Dm−S

η cmS
q (x; θ, η, µ)

]
.

where in the last step we used that for S = ∅ the indicator 1 {mS = v} is always zero

(because v ∈ Cq never has length zero), but for S ̸= ∅ there is always exactly one v ∈ Cq
that satisfiesmS = v, that is, in that second case we just remove the sum over v and replace

v by mS throughout. Next, plugging in the expression for cmq (x; θ, η, µ) in equation (A.7)

above we find

Eθ,η

[
Dm

η u
∗
q(Z; θ, η, µ)

∣∣X = x
]

= Eθ,η

[
Dm

η u(Z; θ, η, µ)
∣∣X = x

]
+

∑
∅≠S⊆{1,...,|m|}

(−1)|S|Dm−S
η

(∑
T⊊S

∫
[DmT

η ℓ(y |x; θ, η)][DmS\T
η u(z; θ, η, µ)]dy

)
.

By again using the product rule for differentiation to apply D
m−S
η to the product in the
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last term, we obtain

Eθ,η

[
Dm

η u
∗
q(Z; θ, η, µ)

∣∣X = x
]

(A.8)

=

∫
ℓ(y |x; θ, η) [Dm

η u(Z; θ, η, µ)]dy

+
∑

∅≠S⊆{1,...,|m|}

(−1)|S|
∑
T⊊S

∑
R⊆−S

∫
[DmR∪T

η ℓ(y |x; θ, η)][Dm(−S\R)∪(S\T )
η u(z; θ, η, µ)]dy,

(A.9)

where we write −S for the set {1, . . . , |m|} \ S. All the terms on the right hand side of

the last display equation are of the form
∫
[DmA

η ℓ(y |x; θ, η)][Dm−A
η u(z; θ, η, µ)]dy, for some

A ⊆ {1, . . . , |m|}, and we can therefore write

Eθ,η

[
Dm

η u
∗
q(Z; θ, η, µ)

∣∣X = x
]
=

∑
A⊆{1,...,|m|}

κA

∫
[DmA

η ℓ(y |x; θ, η)][Dm−A
η u(z; θ, η, µ)]dy,

(A.10)

with

κA = 1{A = ∅}+
∑

∅≠S⊆{1,...,|m|}

(−1)|S|
∑
T⊊S

∑
R⊆−S

1{R ∪ T = A}.

Here, the indicator 1{A = ∅} accounts for the term
∫
ℓ(y |x; θ, η[Dm

η u(Z; θ, η, µ)]dy in

(A.9), while the second term in κA counts the contributions from the triple sum. Our goal

is to show that κA = 0 for all A ⊆ {1, . . . , |m|}. We analyze two cases separately:

• Case 1: For A = ∅, we note that R ∪ T = ∅ implies R = T = ∅. Thus, the indicator

1{R ∪ T = ∅} is non-zero only when R = ∅ and T = ∅, implying that

κ∅ = 1 +
∑

∅≠S⊆{1,...,|m|}

(−1)|S| =
∑

S⊆{1,...,|m|}

(−1)|S| = 0,

where in the second step we used that 1 = (−1)|∅| to include that term into the sum

over S, and the final step is the alternating sum result we already used in the proof

of Lemma 2 above.
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• Case 2: Next, consider A ̸= ∅. For given A and S, we have

∑
T⊊S

∑
R⊆−S

1{R ∪ T = A} =

1 if S ̸⊆ A,

0 if S ⊆ A.
(A.11)

If S ̸⊆ A (i.e. not S ⊆ A), then (A.11) holds because a solution to the conditions

R ∪ T = A, T ⊊ S, R ⊆ −S exists and is uniquely given by T = A ∩ S and R =

A∩(−S). Uniqueness of the pair (T,R) implies that
∑

T⊊S

∑
R⊆−S 1{R∪T = A} = 1

in that case. However, if S ⊆ A then no solution for the pair (T,R) exists (because

T = A ∩ S implies T = S in that case, which contradicts the condition T ⊊ S),

implying that the expression in (A.11) is indeed zero then. Using (A.11) we now find

that

κA =
∑

∅≠S⊆{1,...,|m|}
S ̸⊆A

(−1)|S|

=
∑

∅̸=S⊆{1,...,|m|}

(−1)|S| −
∑

∅≠S⊆A

(−1)|S|

=

 ∑
S⊆{1,...,|m|}

(−1)|S| − (−1)|∅|

−

[∑
S⊆A

(−1)|S| − (−1)|∅|

]

= [0− 1]− [0− 1] = 0.

We have thus shown that κA = 0 for all A ⊆ {1, . . . , |m|}. By (A.10) we thus have

Eθ,η

[
Dm

η u
∗
q(Z; θ, η, µ)

∣∣X = x
]
= 0, which can also be written as

Eθ,η

[
∇q

η u
∗
q(Z; θ, η, µ)

∣∣X = x
]
= 0.

Plugging in the true parameter values θ0 and η0 we thus find

E
[
∇q

η u
∗
q(Z; θ0, η0, µ)

∣∣X = x
]
= 0,

and by the law of iterated expectations also

E
[
∇q

η u
∗
q(Z; θ0, η0, µ)

]
= 0.

Remarkably, this result holds for any value of µ.
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A.2 Proof of Lemma 1

Let τ := (θ, µ). We write uk,i(τ, ηi) for uk,i(Zi; θ, ηi, µ), the kth component of the dim(ui)-

vector ui(Zi; θ, ηi, µ). Furthermore, compared to the statement of the lemma we drop all

subscripts n in the following derivations. In particular, for Kq,n,i we simply write Kq,i. By

a mean-value expansion of η̂i around ηi0 we obtain

1

n

N∑
i=1

uk,i(Zi; θ̂, η̂i, µ̂) =
1

n

N∑
i=1

uk,i(τ̂ , η̂i)

=
1

n

N∑
i=1

uk,i(τ̂ , ηi0)

+
1

n

N∑
i=1

∑
m∈Kq,i

1

m!

[
Dm

ηi
uk,i(τ̂ , ηi0)

]
(η̂i − ηi0)

m

+
1

n

N∑
i=1

∑
m∈Kq+1,i

1

m!

[
Dm

ηi
uk,i(τ̂ , η̃i)

]
(η̂i − ηi0)

m ,

where m! =
∏

r(mr!), and η̃i is some value between ηi0 and η̂i. Next, we perform a mean-

value expansions in τ̂ around τ0 to obtain

1

n

N∑
i=1

uk,i(Zi; θ̂, η̂i, µ̂) =
1

n

N∑
i=1

uk,i(τ0, ηi0)

+
1

n

N∑
i=1

[
∂

∂τ
uk,i(τ0, ηi0)

]⊤
(τ̂ − τ0)︸ ︷︷ ︸

=[Gµ(µ̂−µ0)+Gθ(θ̂−θ0)]
k
+oP (∥τ̂−τ0∥)

+
1

2
(τ̂ − τ0)

⊤

{
1

n

N∑
i=1

[
∂2

∂τ∂τ⊤
uk,i(τ̃ , ηi0)

]}
(τ̂ − τ0)︸ ︷︷ ︸

=:B1,k

+
1

n

N∑
i=1

∑
m∈Kq,i

1

m!

[
Dm

ηi
uk,i(τ0, ηi0)

]
(η̂i − ηi0)

m

︸ ︷︷ ︸
=n−1/2 Rn,k, the k’th component of Rn defined in the lemma.

+
1

n

N∑
i=1

∑
m∈Kq,i

1

m!

[
Dm

ηi

∂

∂τ
uk,i(τ , ηi0)

]⊤
(τ̂ − τ0) (η̂i − ηi0)

m

︸ ︷︷ ︸
=:B2,k
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+
1

n

N∑
i=1

∑
m∈Kq+1,i

1

m!

[
Dm

ηi
uk,i(τ̂ , η̃i)

]
(η̂i − ηi0)

m

︸ ︷︷ ︸
=:B3,k

,

where τ̃ and τ are values between τ̂ and τ0. Denote the dimensions of the parameters θ

and µ by dθ and dµ, respectively. Our assumptions guarantee that

|B1,k| ≤
(dθ + dµ)

2

2
∥τ̂ − τ0∥2

1

n

N∑
i=1

niC(Zi)

≤ (dθ + dµ)
2

2
∥τ̂ − τ0∥2

(
1

n

N∑
i=1

ni [C(Zi)]
2

)1/2

︸ ︷︷ ︸
=OP (1)

(
1

n

N∑
i=1

ni

)1/2

︸ ︷︷ ︸
=O(1)

= OP

(
∥τ̂ − τ0∥2

)
,

|B2,k| ≤ (dθ + dµ) ∥τ̂ − τ0∥
1

n

N∑
i=1

niC(Zi)
∑

m∈Kq,i

1

m!
(η̂i − ηi0)

m

≤ (dθ + dµ) ∥τ̂ − τ0∥

(
1

n

N∑
i=1

ni [C(Zi)]
2

)1/2

︸ ︷︷ ︸
=OP (1)

 1

n

N∑
i=1

ni

 ∑
m∈Kq,i

1

m!
(η̂i − ηi0)

m

21/2

︸ ︷︷ ︸
=oP (1)

= oP (∥τ̂ − τ0∥) ,

|B3,k| ≤
1

n

N∑
i=1

niC(Zi) ∥η̂i − ηi0∥q+1
∑

m∈Kq+1,i

1

m!︸ ︷︷ ︸
=O(1)

= O(1)

(
1

n

N∑
i=1

ni [C(Zi)]
2

)1/2

︸ ︷︷ ︸
=OP (1)

(
1

n

N∑
i=1

ni ∥η̂i − ηi0∥2(q+1)

)1/2

︸ ︷︷ ︸
=oP (n−1/2)

.

= oP (n
−1/2).
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Here, in addition to our assumption we also used the Cauchy-Schwarz inequality. We have

thus shown that

1

n

N∑
i=1

ui(Zi; θ̂, η̂i, µ̂) = Gµ(µ̂− µ0) +Gθ(θ̂ − θ0) +
1

n

N∑
i=1

ui(Zi; θ0, ηi0, µ0) + n−1/2Rn

+OP

(
∥τ̂ − τ0∥2

)
+ oP (∥τ̂ − τ0∥) + oP (n

−1/2).

Using our assumptions on the convergence of µ̂ and θ̂ we thus have

1√
n

n∑
i=1

ui(Zi; θ̂, η̂, µ̂) = Gµ

[√
n(µ̂− µ0)

]
+ oP (∥µ̂− µ0∥)

+
1√
n

N∑
i=1

[ui(Zi; θ0, η0, µ0) +Gθ ψi] +Rn + oP (1). (A.12)

By Assumption 1(i) we have[
1

n

N∑
i=1

∂u⊤i (Zi; θ̂, η̂i, µ̂)

∂µ

]
W

[
1√
n

N∑
i=1

ui(Zi; θ̂, η̂i, µ̂)

]
= oP (1).

By using Assumption 1(iv) and (vii) we thus have

G⊤
µW

[
1√
n

N∑
i=1

ui(Zi; θ̂, η̂i, µ̂)

]
= oP (1).

Plugging the approximation in (A.12) into the last display gives

oP (1) = G⊤
µW

[
1√
n

N∑
i=1

ui(Zi; θ̂, η̂i, µ̂)

]
=
(
G⊤

µWGµ

) [√
n(µ̂− µ0)

]
+ oP (∥µ̂− µ0∥)

+G⊤
µW

{
1√
n

N∑
i=1

[ui(Zi; θ0, ηi0, µ0) +Gθ ψi] +Rn

}
+ oP (1).

Since G⊤
µWGµ is full rank, solving for

√
n(µ̂− µ0) gives the statement of the lemma.

A.3 Proof of Theorem 2

We again drop all subscripts n in the derivations. Let ξi = ui(Zi; θ0, ηi0, µ0) +Gθψi. From

Lemma 1, we have

√
n(µ̂− µ0) = (G⊤

µWGµ)
−1G⊤

µW

{
1√
n

N∑
i=1

ξi +Rn

}
+ oP (1).
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We will show that Rn = oP (1) under our assumptions. First, by Assumption 2(i), the

moment function is Neyman-orthogonal to order q, which implies

E
[
Dm

ηi
ui(Zi; θ0, ηi0, µ0)

]
= 0

for all m ∈ Kq,i. Therefore, Rn is a sum of mean-zero terms. Next, by Assumption 1(iv),

the derivativesDm
ηi
ui(Zi; θ0, ηi0, µ0,n) are all bounded by niC(Zi) with

1
n

∑N
i=1 niE[C(Zi)

2] =

O(1). Using this together with Assumption 1(v) and Assumption 2(ii), one obtains E [R2
n] =

o(1). By Chebyshev’s inequality we thus have Rn = oP (1). Thus, we have

√
n(µ̂n − µ0,n) = (G⊤

µWGµ)
−1G⊤

µW

{
1√
n

N∑
i=1

ξi

}
+ oP (1).

By Assumption 2(ii), (iii), the terms ξi are independent across i. Furthermore, by As-

sumption 2(iv), they satisfy Lindeberg’s condition and have a well-defined variance limit

Vξ. Therefore, by the Lindeberg-Feller Central Limit Theorem:

1√
n

N∑
i=1

ξi
d→ N (0, Vξ).

The conclusion follows by the continuous mapping theorem, giving us

√
n(µ̂− µ0)

d→ N
(
0, (G⊤

µWGµ)
−1G⊤

µWVξWGµ(G
⊤
µWGµ)

−1
)
.
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ONLINE SUPPLEMENT

B Linear network regression

B.1 Model and results

Consider the linear regression model

Y = Xη + σε, ε |X ∼ iidN (0, In), (2.1)

where n is the dimension of Y . We assume that X⊤X is nonsingular with probability one.

Model (2.1) nests the Neyman-Scott model (2.2), for n = NT and X = IN ⊗ ιT , with IN

the N ×N identity matrix and ιT the T × 1 vector of ones. Model (2.1) also nests settings

where X is a network matrix, as in the log wage regression model of Abowd, Kramarz and

Margolis (1999) based on linked worker-firm panel data, in which case η is a vector stacking

worker and firm fixed-effects. Our goal is to estimate µ = η⊤Qη for some symmetric r × r

matrix Q, where r denotes the dimension of η. Such quadratic forms are of interest in panel

and network variance decompositions (e.g., Arellano and Bonhomme, 2012, Andrews, Gill,

Schank and Upward, 2008, Kline, Saggio and Sølvsten, 2020).

Suppose to start with that σ2 is known. Theorem 1 implies the following characteriza-

tion of the first- and second-order estimating equations for µ, based on u(y, x;σ2, η, µ) =

µ− η⊤Qη.

Proposition 1.

u∗1(y, x;σ
2, η, µ) = µ− η⊤Qη − 2η⊤Q⊤(x⊤x)−1x⊤(y − xη),

u∗2(y, x;σ
2, η, µ) = µ− y⊤x(x⊤x)−1Q(x⊤x)−1x⊤y + σ2Trace(Q(x⊤x)−1).

Hence, given a preliminary estimator η̂, the associated first-order orthogonalized esti-

mator of µ0 is

µ̂1 = η̂⊤Qη̂ + 2η⊤Q⊤(x⊤x)−1x⊤(y − xη̂).
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It is easy to see Eθ,η[µ̂1] ̸= µ. In turn, the second-order orthogonalized estimator is

µ̂2 = y⊤x(x⊤x)−1Q(x⊤x)−1x⊤y − σ2Trace(Q(x⊤x)−1).

Note that µ̂2 does not depend on the preliminary estimate η̂, and that Eθ,η[µ̂2] = µ. Hence,

second-order Neyman-orthogonality leads to exact unbiased in this case. The expression

coincides with the trace correction of Andrews, Gill, Schank and Upward (2008).

Turning to the estimation of σ2, we rely on the score

u(y, x;σ2, η) = − n

2σ2
+

1

2σ4
(y − xη)⊤(y − xη).

Using Theorem 1, we obtain the following characterization of the first- and second-order

orthogonalized scores.

Proposition 2.

u∗1(y, x;σ
2, η) = − n

2σ2
+

1

2σ4
(y − xη)⊤(y − xη),

u∗2(y, x;σ
2, η) = −

n− Trace
(
x(x⊤x)−1x⊤

)
2σ2

+
1

2σ4
y⊤(In − x(x⊤x)−1x⊤)y.

As in the special case of the Neyman-Scott model, first-order orthogonalization is im-

material, and the first-order orthogonalized estimator of σ2 is

σ̂2
1 =

(Y −Xη̂)⊤(Y −Xη̂)

n
,

and Eθ,η[σ̂
2
1] ̸= σ2. In turn, the second-order orthogonalized estimator is

σ̂2 =
Y ⊤(In −X(X⊤X)−1X⊤)Y

n− Trace (X(X⊤X)−1X⊤)
, (2.2)

which is the familiar degree of freedom correction, exactly unbiased in this case, and inde-

pendent of the preliminary estimator η̂.7 In the special case of the Neyman-Scott model,

(2.2) simplifies to

σ̂2 =
1

N(T − 1)

N∑
i=1

T∑
t=1

(Yit − Y i)
2,

where Y i =
1
T

∑T
t=1 Yit, which is exactly unbiased for fixed T and N .

7Note it is not necessary for X⊤X to be non-singular for σ̂2 to be well-defined, provided one replaces

(X⊤X)−1 by a generalized inverse.
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B.2 Main proofs

Proof of Proposition 1. Let

u(Y,X; θ, η, µ) = µ− η⊤Qη.

We have

log ℓ(Y |X; θ, η) = −n
2
log σ2 − 1

2σ2
(Y −Xη)⊤(Y −Xη).

Hence,

v1(Y,X; θ, η) =
1

σ2
X⊤(Y −Xη),

and

v2(Y,X; θ, η) = vech

(
− 1

σ2
X⊤X +

1

σ4
X⊤(Y −Xη)(Y −Xη)⊤X

)
,

where vech(C) denotes the half-vectorization of a symmetric matrix C.

By Theorem 1 we have

u∗2(Y,X; θ, η, µ) = u(Y,X; θ, η, µ)− A⊤

 v1(Y,X; θ, η)

v2(Y,X; θ, η)

 ,

where

A = −

E

 v1(Y,X; θ, η)v1(Y,X; θ, η)⊤ v1(Y,X; θ, η)v2(Y,X; θ, η)⊤

v2(Y,X; θ, η)v1(Y,X; θ, η)⊤ v2(Y,X; θ, η)v2(Y,X; θ, η)⊤


−1 −2Qη

−2vech(Q)

 ,

where for conciseness we omit the dependence of A on X, θ, and η from the notation, and

we implicitly condition on X in all expectations.

Note

v1(Y,X; θ, η) =
1

σ2
X⊤ε,

and

v2(Y,X; θ, η) = vech

(
− 1

σ2
X⊤X +

1

σ4
X⊤εε⊤X

)
.
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Hence

E[v1(Y,X; θ, η)v1(Y,X; θ, η)⊤] =
1

σ2
X⊤X,

E[v1(Y,X; θ, η)v2(Y,X; θ, η)⊤] = 0,

E[v2(Y,X; θ, η)v2(Y,X; θ, η)⊤]

= E

[
vech

(
− 1

σ2
X⊤X +

1

σ4
X⊤εε⊤X

)
vech

(
− 1

σ2
X⊤X +

1

σ4
X⊤εε⊤X

)⊤
]
.

Let Lm denote the elimination matrix such that vech(Q) = Lvec(Q) (Magnus and

Neudecker, 1980). Let Kn denote the commutation matrix such that Knvec(A) = vec(A⊤)

(Magnus and Neudecker, 1979). Note that Kn = K⊤
n . We have the following result.

Lemma 3.

E[v2(Y,X; θ, η)v2(Y,X; θ, η)⊤] =
1

σ4
Lm(X

⊤ ⊗X⊤)[In2 +Kn](X ⊗X)L⊤
m.

It follows from the above that

u∗2(Y,X; θ, η, µ) = µ− η⊤Qη − 2η⊤Q⊤(X⊤X)−1X⊤(Y −Xη)

− 2vech(Q)⊤
[
Lm(X

⊤ ⊗X⊤)[In2 +Kn](X ⊗X)L⊤
m

]−1

× vech
(
−σ2X⊤X +X⊤(Y −Xη)(Y −Xη)⊤X

)
.

The following lemma is instrumental.

Lemma 4. Let A and B be symmetric matrices. Then

vech(A)⊤
[
Lm(X

⊤ ⊗X⊤)[In2 +Kn](X ⊗X)L⊤
m

]−1
vech(B) =

1

2
Trace(A(X⊤X)−1B(X⊤X)−1).

By Lemma 4 applied to A = Q and B = X⊤(Y −Xη)(Y −Xη)⊤X − σ2X⊤X, we then

have

u∗2(Y,X; θ, η, µ) =µ− η⊤Qη − 2η⊤Q⊤(X⊤X)−1X⊤(Y −Xη)

− Trace
(
Q(X⊤X)−1[X⊤(Y −Xη)(Y −Xη)⊤X − σ2X⊤X](X⊤X)−1

)
= µ− Y ⊤X(X⊤X)−1Q(X⊤X)−1X⊤Y + σ2Trace(Q(X⊤X)−1).
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The associated second-order Neyman-orthogonal estimator is then

µ̂ = Y ⊤X(X⊤X)−1Q(X⊤X)−1X⊤Y − σ2Trace(Q(X⊤X)−1),

which corresponds to the trace correction of Andrews, Gill, Schank and Upward (2008),

for fixed σ2.

Proof of Proposition 2 Let

u(Y,X;σ2, η) = − n

2σ2
+

1

2σ4
(Y −Xη)⊤(Y −Xη).

By Theorem 1 we have

u∗2(Y,X; θ, η) = u(Y,X; θ, η)− A⊤

 v1(Y,X; θ, η)

v2(Y,X; θ, η)

 ,

where

A = E

 v1(Y,X; θ, η)v1(Y,X; θ, η)⊤ v1(Y,X; θ, η)v2(Y,X; θ, η)⊤

v2(Y,X; θ, η)v1(Y,X; θ, η)⊤ v2(Y,X; θ, η)v2(Y,X; θ, η)⊤

−1

× E

 v1(Y,X; θ, η)u(Y,X; θ, η)

v2(Y,X; θ, η)u(Y,X; θ, η)

 .
We have the following result.

Lemma 5.

E[v1(Y,X; θ, η)u(Y,X; θ, η)] = 0,

and

E[v2(Y,X; θ, η)u(Y,X; θ, η)] =
1

2σ4
Lm(X

⊤ ⊗X⊤)(In2 +Kn)vec(In).

Using Lemma 5, we have

u∗2(Y,X; θ, η) = − n

2σ2
+

1

2σ4
(Y −Xη)⊤(Y −Xη)

− 1

2
vec(In)

⊤(In2 +Kn)(X ⊗X)L⊤
m

[
Lm(X

⊤ ⊗X⊤)[In2 +Kn](X ⊗X)L⊤
m

]−1

× Lmvec

(
− 1

σ2
X⊤X +

1

σ4
X⊤(Y −Xη)(Y −Xη)⊤X

)
.
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Lemma 6. We equivalently have

u∗2(Y,X; θ, η) = − n

2σ2
+

1

2σ4
(Y −Xη)⊤(Y −Xη)

+
1

2σ2
Trace

(
X(X⊤X)−1X⊤)− 1

2σ4
(Y −Xη)⊤X(X⊤X)−1X⊤(Y −Xη).

By Lemma 6, the second-order orthogonalized score is independent of η and is given by

u∗2(Y,X; θ, η) = −
n− Trace

(
X(X⊤X)−1X⊤)
2σ2

+
1

2σ4
Y ⊤(In −X(X⊤X)−1X⊤)Y.

B.3 Proofs of intermediate lemmas

Proof of Lemma 3. We have

E[v2(Y,X; θ, η)v2(Y,X; θ, η)⊤]

= E

[
vech

(
− 1

σ2
X⊤X +

1

σ4
X⊤εε⊤X

)
vech

(
− 1

σ2
X⊤X +

1

σ4
X⊤εε⊤X

)⊤
]

= Lm(X
⊤ ⊗X⊤)E

[(
1

σ4
ε⊗ ε− 1

σ2
vec(In)

)(
1

σ4
ε⊗ ε− 1

σ2
vec(In)

)⊤
]
(X ⊗X)L⊤

m

= Lm(X
⊤ ⊗X⊤)E

[
1

σ8
(εε⊤)⊗ (εε⊤)− 1

σ4
vec(In)vec(In)

⊤
]
(X ⊗X)L⊤

m.

Now, by (4.3) in Ghazal and Neudecker (2000), we have, since εε⊤ ∼ Wn(σ
2In, 1),

E
[
(εε⊤)⊗ (εε⊤)

]
= σ4vec(In)vec(In)

⊤ + σ4(In2 +Kn)(In ⊗ In).

It follows that

E[v2(Y,X; θ, η)v2(Y,X; θ, η)⊤] =
1

σ4
Lm(X

⊤ ⊗X⊤)(In2 +Kn)(X ⊗X)L⊤
m.

This shows Lemma 3.

Proof of Lemma 4. Let Dm denote the duplication matrix, such, that for any symmetric

matrix C, Dmvech(C) = vec(C). We will make use of the following properties (Magnus
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and Neudecker, 1980):

Dm = (Im2 +Km)L
⊤
m

(
Lm(Im2 +Km)L

⊤
m

)−1
, (2.3)

(In2 +Kn)(X ⊗X) = (X ⊗X)(Im2 +Km), (2.4)

DmLm(Im2 +Km) = (Im2 +Km), (2.5)

KmDm = Dm. (2.6)

Note that vech(A) = LmDmvech(A) and vech(B) = LmDmvech(B). Hence

vech(A)⊤
[
Lm(X

⊤ ⊗X⊤)[In2 +Kn](X ⊗X)L⊤
m

]−1
vech(B)

= vech(A)⊤D⊤
mL

⊤
m

[
Lm(X

⊤ ⊗X⊤)[In2 +Kn](X ⊗X)L⊤
m

]−1
LmDmvech(B)

= vech(A)⊤
(
Lm(Im2 +Km)L

⊤
m

)−1
Lm(Im2 +Km)L

⊤
m

[
Lm(X

⊤ ⊗X⊤)[In2 +Kn](X ⊗X)L⊤
m

]−1

× Lm(Im2 +Km)L
⊤
m

(
Lm(Im2 +Km)L

⊤
m

)−1
vech(B) by (2.3)

= vech(A)⊤
(
Lm(Im2 +Km)L

⊤
m

)−1
Lm(Im2 +Km)L

⊤
m

[
Lm(X

⊤ ⊗X⊤)(X ⊗X)(Im2 +Km)L
⊤
m

]−1

× Lm(Im2 +Km)L
⊤
m

(
Lm(Im2 +Km)L

⊤
m

)−1
vech(B) by (2.4)

= vech(A)⊤
[
Lm(X

⊤ ⊗X⊤)(X ⊗X)(Im2 +Km)L
⊤
m

]−1
vech(B).

Now, we have

Lm(X
⊤ ⊗X⊤)(X ⊗X)(Im2 +Km)L

⊤
mD

⊤
m((X

⊤X)−1 ⊗ (X⊤X)−1)Dm

= Lm(X
⊤ ⊗X⊤)(X ⊗X)(Im2 +Km)((X

⊤X)−1 ⊗ (X⊤X)−1)Dm by (2.5)

= Lm(Im2 +Km)(X
⊤ ⊗X⊤)(X ⊗X)((X⊤X)−1 ⊗ (X⊤X)−1)Dm by (2.4)

= Lm(Im2 +Km)((X
⊤X)⊗ (X⊤X))((X⊤X)−1 ⊗ (X⊤X)−1)Dm

= Lm(Im2 +Km)Dm

= 2LmDm by (2.6)

= 2Im2 .

As a result,

[
Lm(X

⊤ ⊗X⊤)(X ⊗X)(Im2 +Km)L
⊤
m

]−1
=

1

2
D⊤

m((X
⊤X)−1 ⊗ (X⊤X)−1)Dm.
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Hence

vech(A)⊤
[
Lm(X

⊤ ⊗X⊤)(X ⊗X)(Im2 +Km)L
⊤
m

]−1
vech(B)

=
1

2
vech(A)⊤D⊤

m((X
⊤X)−1 ⊗ (X⊤X)−1)Dmvech(B)

=
1

2
vec(A)⊤((X⊤X)−1 ⊗ (X⊤X)−1)vec(B)

=
1

2
vec(A)⊤vec((X⊤X)−1B(X⊤X)−1)

=
1

2
Trace

(
A⊤(X⊤X)−1B(X⊤X)−1

)
=

1

2
Trace

(
A(X⊤X)−1B(X⊤X)−1

)
since A is symmetric. This shows Lemma 4.

Proof of Lemma 5. Since

u(Y,X; θ, η) = − n

2σ2
+

1

2σ4
ε⊤ε,

we have

E[v1(Y,X; θ, η)u(Y,X; θ, η)] = 0,

and

E[v2(Y,X; θ, η)u(Y,X; θ, η)] = E
[
vech

(
− 1

σ2
X⊤X +

1

σ4
X⊤εε⊤X

)(
− n

2σ2
+

1

2σ4
ε⊤ε

)]
= LmE

[
vec

(
1

σ4
X⊤εε⊤X

(
− n

2σ2
+

1

2σ4
ε⊤ε

))]
= Lm

(
− n

2σ4
(X⊤ ⊗X⊤)vec(In) +

1

2σ8
(X⊤ ⊗X⊤)E

[
(εε⊤)⊗ (εε⊤)

]
vec(In)

)
= Lm

(
− n

2σ4
(X⊤ ⊗X⊤)vec(In)

+
1

2σ8
(X⊤ ⊗X⊤)

(
σ4vec(In)vec(In)

⊤ + σ4(In2 +Kn)(In ⊗ In)
)
vec(In)

)
,

where we have used the expression for E
[
(εε⊤)⊗ (εε⊤)

]
from Ghazal and Neudecker (2000)

as in the proof of Lemma 4. It follows that

E[v2(Y,X; θ, η)u(Y,X; θ, η)] =
1

2σ4
Lm(X

⊤ ⊗X⊤)(In2 +Kn)vec(In).

This shows Lemma 5.
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Proof of Lemma 6. Using results from the proof of Lemma 4 we have[
Lm(X

⊤ ⊗X⊤)[In2 +Kn](X ⊗X)L⊤
m

]−1

=
[
Lm(X

⊤ ⊗X⊤)(X ⊗X)[Im2 +Km]L
⊤
m

]−1

=
1

2
D⊤

m((X
⊤X)−1 ⊗ (X⊤X)−1)Dm.

Hence

u∗2(Y,X; θ, η) = − n

2σ2
+

1

2σ4
(Y −Xη)⊤(Y −Xη)

− 1

4
vec(In)

⊤(In2 +Kn)(X ⊗X)L⊤
mD

⊤
m((X

⊤X)−1 ⊗ (X⊤X)−1)Dm

× Lmvec

(
− 1

σ2
X⊤X +

1

σ4
X⊤(Y −Xη)(Y −Xη)⊤X

)
= − n

2σ2
+

1

2σ4
(Y −Xη)⊤(Y −Xη)

− 1

2
vec(In)

⊤(X ⊗X)L⊤
mD

⊤
m((X

⊤X)−1 ⊗ (X⊤X)−1)Dm

× Lm(X
⊤ ⊗X⊤)vec

(
− 1

σ2
In +

1

σ4
(Y −Xη)(Y −Xη)⊤

)
,

where we have used that

vec(In)
⊤(In2 +Kn) = 2vec(In)

⊤.

Now, for any symmetric matrix A, DmLmvec(A) = vec(A). Hence we have

u∗2(Y,X; θ, η) = − n

2σ2
+

1

2σ4
(Y −Xη)⊤(Y −Xη)

− 1

2
vec(In)

⊤(X ⊗X)((X⊤X)−1 ⊗ (X⊤X)−1)

× (X⊤ ⊗X⊤)vec

(
− 1

σ2
In +

1

σ4
(Y −Xη)(Y −Xη)⊤

)
= − n

2σ2
+

1

2σ4
(Y −Xη)⊤(Y −Xη)

+
1

2σ2
Trace

(
X(X⊤X)−1X⊤)− 1

2σ4
(Y −Xη)⊤X(X⊤X)−1X⊤(Y −Xη)

= − n

2σ2
+

1

2σ4
(Y −Xη)⊤(Y −Xη)

+
1

2σ2
Trace

(
X(X⊤X)−1X⊤)− 1

2σ4
(Y −Xη)⊤X(X⊤X)−1X⊤(Y −Xη),
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where we have used that X(X⊤X)−1X⊤ is symmetric and idempotent. This shows Lemma

6.

C Implementation in nonlinear regression

C.1 Expression for M

Following Constantine and Savits (1996), consider a multivariate function

h (x1, . . . , xd) = f
[
g(1) (x1, . . . , xd) , . . . , g

(m) (x1, . . . , xd)
]
,

hν = Dν
xh (x

0) , fλ = Dλ
yf (y

0) , g
(i)
µ = Dµ

xg
(i) (x0) ,gµ =

(
g
(1)
µ , . . . , g

(m)
µ

)
. The Faà di Bruno

formula is (Theorem 2.1 in Constantine and Savits, 1996):

hν =
∑

1≤|λ|≤n

fλ

n∑
s=1

∑
ps(ν,λ)

(ν!)
s∏

j=1

[
gℓj

]kj

(kj!) [ℓj!]
|kj |︸ ︷︷ ︸

elements of M

,

where n = |ν|, and

ps(ν,λ) =

{
(k1, . . . ,ks; ℓ1, . . . , ℓs) : |ki| > 0,

0 ≺ ℓ1 ≺ · · · ≺ ℓs,
s∑

i=1

ki = λ and
s∑

i=1

|ki| ℓi = ν

}
.

C.2 Useful properties of the normal distribution

We first consider the univariate normal case.

Lemma 7. For m ∈ R and σ ∈ [0,∞), let Y ∼ N (m,σ2), with corresponding likelihood

function

ℓ(y |m,σ) = 1√
2πσ2

exp

(
−(y −m)2)

2σ2

)
.

Let j, k ∈ {0, 1, 2, . . .}, and define

κjk := Em,σ

[
1

ℓ(Y |m,σ)
∂jℓ(Y |m,σ)

(∂m)j
1

ℓ(Y |m,σ)
∂kℓ(Y |m,σ)

(∂m)k

]
,

ρj := Em,σ

[
1

ℓ(Y |m,σ)
∂jℓ(Y |m,σ)

(∂m)j
∂ log ℓ(Y |m,σ)

∂σ

]
.
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Then,

κjk = 1
{
j = k

} j!

σ2j
, ρj = 1

{
j = 2

} 2

σ3
.

Let ϕ(y) = 1√
2π

exp (−y2/2) and ϕ(j)(y) = djϕ(y)
dyj

. Hermite polynomials are defined by

hj(y) = (−1)j[ϕ(y)]−1 ϕ(j)(y). The proof of Lemma 7 is given in Subsection C.4. It crucially

relies on the following orthogonality property of Hermite polynomials:∫ ∞

−∞
hj(y)hk(y)ϕ(y) dy = 1

{
j = k

}
j! . (3.1)

The result in Lemma 7 is sufficient for our purposes, but more general results can be

derived.8

Next, we consider a vector of independent normal variables with heteroscedastic means

and variances.

Lemma 8. Let d ∈ {1, 2, 3, . . .}. For m ∈ Rd and σ ∈ [0,∞)d, let Σ(σ) be the d × d

diagonal matrix with diagonal entries σ2
i , and let Y ∼ N (m,Σ(σ)). The corresponding

likelihood function reads

ℓ(y |m,σ) =
d∏

i=1

ℓ(yi |mi, σi), ℓ(yi |mi, σi) =

[
1√
2πσ2

i

exp

(
−(yi −mi)

2)

2σ2
i

)]
.

Let j, k ∈ {0, 1, 2, . . .}d, j∗ =
∑d

i=1 ji, k
∗ =

∑d
i=1 ki, and define

κ(j, k) := Em,σ

[
1

ℓ(Y |m,σ)
∂j

∗
ℓ(Y |m,σ)∏d
i=1(∂mi)ji

1

ℓ(Y |m,σ)
∂k

∗
ℓ(Y |m,σ)∏d
i=1(∂mi)ki

]
,

ρ(j, i′) := Em,σ

[
1

ℓ(Y |m,σ)
∂j

∗
ℓ(Y |m,σ)∏d
i=1(∂mi)ji

∂ log ℓ(Y |m,σ)
∂σi′

]
,

8More generally, for k1, k2 ∈ {0, 1, 2, . . .} and j1, j2 ∈ {0, 1}, let

κk1,k2,j1,j2 := Em,σ

[
1

ℓ(Y |m,σ)

∂k1+j1ℓ(Y |m,σ)

(∂m)k1(∂σ)j1
1

ℓ(Y |m,σ)

∂k2+j2ℓ(Y |m,σ)

(∂m)k2(∂σ)j2

]
=

∫ ∞

−∞

1

ℓ(y |m,σ)

∂k1+j1ℓ(y |m,σ)

(∂m)k1(∂σ)j1
∂k2+j2ℓ(y |m,σ)

(∂m)k2(∂σ)j2
dy.

One then finds

κk1,k2,j1,j2 = 1
{
k1 + 2j1 = k2 + 2j2

}
(k1 + 2j1)! σ

−[2(k1+2j1)−j1−j2].
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where i′ ∈ {1, . . . , d} in the last line. Then,

κ(j, k) = 1
{
j = k

} d∏
i=1

ji!

σ2ji
i

, ρ(j, i) =


2

σ3
i

if ji = 2, and all other entries of j are zero,

0 otherwise.

Lemma 8 is an immediate corollary of Lemma 7. Using the independence of the com-

ponents of Y we find

∂j
∗
ℓ(y |m,σ)∏d
i=1(∂m)ji

=
d∏

i=1

∂jiℓ(yi |mi, σi)

(∂m)ji
,

and

κ(j, k) =
d∏

i=1

κji,ki .

Plugging in the result for κjk in Lemma 7 then gives the result for κ(j, k) in Lemma 7.

Analogously for ρ(j, i).

C.3 Nonlinear regression with normal errors

Model:

Yi = m(Xi; θ, η) + σ(Xi; θ)Ui, Ui ∼ iidN (0, 1), i = 1, . . . , d,

wherem(·; ·, ·) and σ(·; ·) are known functions, and θ and η are unknown parameters. Ignore

θ for the moment and write

Yi = mi(η) + σi Ui.

Let m = (m1, . . . ,md) and σ = (σ1, . . . , σd). The likelihood for y = (y1, . . . , yd) is then

given by

ℓ(y | η) = ℓ(y |m(η), σ),

where ℓ(y |m,σ) is given in Lemma 8. Let ∇(p)
η be the vector operator that collects all

unique derivatives with respect to η up to order p. Let ∇(p)
m be the vector operator that
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collects all unique derivatives with respect to m up to order p. Then, there exists a matrix

valued function M(η), which only depends η and on the function m(η), such that

∇(η)
p ℓ(y | η) =M(η)∇(m)

p ℓ(y |m(η), σ). (3.2)

We want to calculate

Eη

[
∇(p)

η ℓ(Y | η)
ℓ(Y | η)

∇(p)
η ℓ(Y | η)⊤

ℓ(Y | η)

]
.

Lemma 8 gives us explicit expressions for all the components of

Em,σ

[
∇(p)

m ℓ(Y |m,σ)
ℓ(Y |m,σ)

∇(p)
m ℓ(Y |m,σ)⊤

ℓ(Y |m,σ)

]
.

Using (3.2) we have

Eη

[
∇(p)

η ℓ(Y | η)
ℓ(Y | η)

∇(p)
η ℓ(Y | η)⊤

ℓ(Y | η)

]

=M(η)Em(η),σ

[
∇(p)

m ℓ(Y |m(η), σ)

ℓ(Y |m(η), σ)

∇(p)
m ℓ(Y |m(η), σ)⊤

ℓ(Y |m(η), σ)

]
M(η)⊤.

Thus, by combining Lemma 8 with the multidimensional Faà di Bruno’s formula we get

explicit expressions for all the matrices we need.

C.4 Proof of Lemma 7

We already introduced ϕ(y) = 1√
2π

exp (−y2/2) and ϕ(j)(y) = djϕ(y)
dyj

above. Let j, k ∈

{0, 1, 2, 3, . . .}. The well-known orthogonality property of Hermite polynomials in (3.1) can

we rewritten as ∫ ∞

−∞

ϕ(j)(y)ϕ(k)(y)

ϕ(y)
dy = 1

{
j = k

}
j! . (3.3)

Another well-known property of Hermite polynomials is the recurrence relation hj+1(y) =

yhj(y)− d
dy
hj(y). Using this, it is easy to show that for j > k we have∫ ∞

−∞

y ϕ(j)(y)ϕ(k)(y)

ϕ(y)
dy = − 1

{
j = k + 1

}
j! . (3.4)
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Next, we have

ℓ(y |m,σ) = 1

σ
ϕ

(
y −m

σ

)
,

∂jℓ(y |m,σ)
(∂m)j

=
(−1)j

σj+1
ϕ(j)

(
y −m

σ

)
.

Using this we obtain

κjk := Em,σ

[
1

ℓ(Y |m,σ)
∂jℓ(Y |m,σ)

(∂m)j
1

ℓ(Y |m,σ)
∂kℓ(Y |m,σ)

(∂m)k

]
=

∫ ∞

−∞

1

ℓ(y |m,σ)
∂jℓ(y |m,σ)

(∂m)j
∂kℓ(y |m,σ)

(∂m)k
dy

=
(−1)j+k

σj+k+1

∫ ∞

−∞

1

ϕ
(
y−m
σ

) ϕ(j)

(
y −m

σ

)
ϕ(k)

(
y −m

σ

)
dy

=
(−1)j+k

σj+k

∫ ∞

−∞

ϕ(j)(y)ϕ(k)(y)

ϕ(y)
dy

= 1
{
j = k

} j!

σ2j
,

where the second to last step employs a change of variables in the integral (y−m
σ

7→ y), and

the last step uses (3.3). Similarly, for

∂ℓ(y |m,σ)
∂σ

= − 1

σ2
ϕ

(
y −m

σ

)
−
(
y −m

σ3

)
ϕ(1)

(
y −m

σ

)
,

one finds

ρj := Em,σ

[
1

ℓ(Y |m,σ)
∂jℓ(Y |m,σ)

(∂m)j
∂ log ℓ(Y |m,σ)

∂σ

]
=

∫ ∞

−∞

1

ℓ(y |m,σ)
∂jℓ(y |m,σ)

(∂m)j
∂ℓ(y |m,σ)

∂σ
dy

=
(−1)1+j

σ2+j

∫ ∞

−∞

1

ϕ
(
y−m
σ

) ϕ(j)

(
y −m

σ

) [
ϕ

(
y −m

σ

)
+

(
y −m

σ

)
ϕ(1)

(
y −m

σ

)]
dy

=
(−1)1+j

σ1+j

∫ ∞

−∞

1

ϕ (y)
ϕ(j) (y)

[
ϕ (y) + y ϕ(1) (y)

]
dy

= 1
{
j = 2

}(−1)

σ3

∫ ∞

−∞

y ϕ(1) (y) ϕ(2) (y)

ϕ (y)
dy

= 1
{
j = 2

} 2

σ3
.

where we again employed the same change of variables in the integration and also use (3.3)

and (3.4).

63



D Monte Carlo simulation

In this section of the appendix we report on the results of a Monte Carlo experiment. We

specify a CES model of team production with log-normal errors, where we take the network

structure (i.e., the set K in (5.3)) as given from the empirical data. We fix the true value

of the substitution parameter to γ0 = 1, the team size parameter to β0 = 1, the log-error

variance in teams of size 2 to σ2
0(2) = 1, and the variance in teams of size 1 to σ2

0(1) = 1.

This data generating process is designed to approximate what we found on the empirical

data.

We report results based on 300 simulations. In each simulated sample, we estimate the

parameters using plug-in method-of-moments and the Neyman-orthogonalized method-of-

moments estimates of degree q = 1 to q = 6. As we did in our empirical study, we

compute sample-split preliminary estimates of the author fixed-effects based on all their

sole-authored publications except for one, selected at random. However, in the simulation

exercise we do not cross-fit the estimators, and simply choose a random selection of sole-

authored publications for each author in each Monte Carlo run.

In Tables 3 and 4 we show the median, mean, 2.5% quantile, and 97.5% quantile of each

estimate across simulations. Starting with the substitution parameter γ, we see that the

plug-in estimator is severely biased, with median and mean biases of -50% (expressed in

proportion of the true value). For this parameter, all Neyman-orthogonalized estimators

are substantially less biased, with a median bias ranging between 1% and 6%, with the

lowest bias achieved by the estimates orthogonalized to order 5 and 6. However, in some

replications the orthogonalized estimates tend to have large values, which is reflected in a

somewhat larger mean bias, close to 3%, and quantile bands that are not symmetric around

the true value.

Turning next to the team size parameter β, we see that both the plug-in and first-order

Neyman-orthogonalized estimators are biased, with a median and mean bias of 5%–6%.

All orthogonalized estimates of order q ≥ 2 are virtually unbiased, both for the mean and

the median. Moreover, in this case the quantile bands are symmetric around the true
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parameter value.

Shifting attention to the variance in teams of size 2, σ2(2), we see that both the plug-in

and first-order Neyman-orthogonalized estimators are severely biased, with a median and

mean bias of 16%–18%. All orthogonalized estimates of order q ≥ 2 are virtually unbiased,

both for the mean and the median, and the quantile bands are centered around the true

parameter value.

Lastly, turning to the variance in teams of size 1, σ2(1), the plug-in estimator exhibits

a large bias of 33%. First-order orthogonalization only decreases the bias slightly, to 27%.

In contrast, the Neyman-orthogonalized estimators continue to show good performance. In

particular, when q ≥ 4 the estimates are virtually unbiased, and the quantile bands are

symmetric around the true value.

E Restrictions independent of individual effects

Model (5.3) implies restrictions on parameters γ0, β0, σ
2
0(1), σ

2
0(2) that do not depend on

the author-specific effects ηi0.
9 As an example, the model implies the following alternative

expression for the team size parameter β0:

β0 =

(E[Y γ0
j | sj = 2]

E[Y γ0
j | sj = 1]

) 1
γ0

exp

(
1

2
γ0[σ

2
0(1)− σ2

0(2)]

)
, (5.1)

which does not involve the fixed-effects ηi0. Note that, if γ0 = 0 and output is additive in

worker inputs, then log β0 is simply the difference between average log-outputs in teams of

size 2 and 1, respectively. As a check, in Figure 2 we report estimates of the left-hand side of

(5.1), against the estimates of β0 shown in Table 1, for various orders of orthogonalization.

We see that the estimates of the two sides of (5.1) tend to agree with each other well

irrespective of the orthogonalization order, with slightly closer alignment for estimates of

order q ≥ 2.

Model (5.3) also implies restrictions on γ0 alone. To see this, let us write (5.3), within

9The analysis in this section was inspired by discussions with Bo Honoré.
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Table 3: Monte Carlo simulation

Substitution γ (true value=1)

Median Mean 2.5% 97.5%

Plug-in 0.5084 0.5100 0.4213 0.6013

q = 1 0.9895 0.9956 0.7317 1.3041

q = 2 1.0562 1.0813 0.7487 1.5680

q = 3 1.0353 1.0571 0.7265 1.5369

q = 4 1.0148 1.0364 0.7132 1.4881

q = 5 1.0091 1.0303 0.7109 1.4743

q = 6 1.0091 1.0287 0.7124 1.4841

Team size β (true value=1)

Median Mean 2.5% 97.5%

Plug-in 1.0610 1.0614 1.0217 1.0962

q = 1 1.0457 1.0474 0.9883 1.1008

q = 2 1.0016 1.0012 0.9318 1.0616

q = 3 1.0007 0.9985 0.9247 1.0615

q = 4 1.0010 0.9990 0.9245 1.0605

q = 5 1.0014 0.9993 0.9217 1.0602

q = 6 1.0014 0.9994 0.9245 1.0600

Notes: 300 simulations.
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Table 4: Monte Carlo simulation (continued)

Variance σ2(2) (true value=1)

Median Mean 2.5% 97.5%

Plug-in 1.1624 1.1621 1.1277 1.1960

q = 1 1.1838 1.1833 1.1456 1.2223

q = 2 0.9985 0.9977 0.9594 1.0371

q = 3 1.0017 1.0013 0.9610 1.0369

q = 4 1.0014 1.0009 0.9635 1.0382

q = 5 1.0016 1.0005 0.9622 1.0373

q = 6 1.0016 1.0005 0.9615 1.0371

Variance σ2(1) (true value=1)

Median Mean 2.5% 97.5%

Plug-in 1.3337 1.3332 1.2862 1.3805

q = 1 1.2682 1.2702 1.2129 1.3285

q = 2 1.0212 1.0180 0.9429 1.0899

q = 3 1.0154 1.0128 0.9409 1.0910

q = 4 1.0052 1.0049 0.9272 1.0790

q = 5 1.0018 1.0022 0.9259 1.0759

q = 6 1.0014 1.0016 0.9248 1.0752

Notes: 300 simulations.
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Figure 2: Comparing two estimates of β0
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Notes: Estimate of β0 on the x-axis, model-based estimate of β0 based on the right-hand side of (5.1) on

the y-axis. Each point corresponds to an order of orthogonalization.

teams of size 2 only, as

Y γ0
j =

1

2
βγ0
0

(
ηγ0k(j,1)0 + ηγ0k(j,2)0

)
ε
γ0σ0(2)
j ,

which we write in vector form as

Y (γ0) = Aη̃0 + ε̃, (5.2)

where Y (γ0) has elements Y γ0
j , A is a matrix of zeros and ones, η̃k0 =

1
2
βγ0
0 η

γ0
k0 exp

(
1
2
γ20σ

2
0(2)

)
,

and ε̃j =
1
2
βγ0
0

(
ηγ0k(j,1)0 + ηγ0k(j,2)0

) [
ε
γ0σ0(2)
j − exp

(
1
2
γ20σ

2
0(2)

)]
. Since E[ε̃j |A] = 0, (5.2) im-

plies the conditional moment equalities

E
[
(I − AA†)Y (γ0) |A

]
= 0, (5.3)

which only depend on γ0.

To use (5.3) for estimation, we rely on a set of instruments. For this purpose, we use

interacted preliminary estimates Zj = η̂k(j,1)η̂k(j,2) for k(j, 1), k(j, 2) the co-authors of j.

Since we assume the preliminary estimates are constructed from an independent sample,

we have

E
[
Z ′(I − AA†)Y (γ0)

]
= 0. (5.4)
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Note these restrictions remain valid when εj are not Gaussian or not mutually independent,

provided they are independent of A. We use GMM estimation based on (5.4), that is,

γ̂GMM = argmin
γ

|Z ′(I − AA†)Y (γ)|. (5.5)

We implement this estimator in the same way we have implemented our Neyman-orthogonalized

equations. Specifically, we construct preliminary estimates of author effects using all but

one sole-authored paper for each author, where we select the held-out sole-authored paper

at random.

Using the same Monte Carlo simulation design as in Section D tends to give noisy

estimates. For example, when the true value is γ0 = 1, and σ0(1) = 1/5 and σ0(2) = 1/5,

we obtain a mean GMM estimate of 1.0381, a median estimate of 0.9950, and a standard

deviation of 0.2108 across 300 simulations. Moreover, out of the 300 simulations, in 23 cases

we are unable to find another minimum in (5.5) other than γ2 = 0. Note these findings

correspond to a model with error variances that are 25 times smaller than the variances we

used for our main simulation design in Section D. This suggests this estimation approach,

at least for this particular choice of instruments, is considerably less precise than our

likelihood-based approach.

Lastly, computing the GMM estimator on the empirical data, cross-fitting 100 times, we

obtain γ̂GMM = 0.6110. This is of a comparable magnitude to the estimates of γ reported

in Table 1, when using a sufficiently high order of orthogonalization. However, it is worth

noting that, out of the 100 random splits of the sole-authored productions, in 11 cases

we are unable to find another minimum in (5.5) other than γ = 0, again reflecting the

instability of this method in our setting.
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