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1 Introduction

Econometric models for panel data almost invariably feature fixed effects. Their presence

complicates estimation and inference as they introduce bias in the fixed-effect estimator of

the parameter of interest, in general. A leading case is the estimation of the regression slopes

in a linear model when the regressors are not strictly exogenous. The canonical example

is an autoregressive model, where the bias of the within-group estimator was first derived

in influential work by Nickell (1981), but correlation between contemporaneous errors and

both past and future regressors is the norm rather than the exception. The resulting

bias remains important in large samples unless the number of time-series observations, m,

is large relative to the cross-sectional sample size, n. This is, however, not a situation

regularly encountered in practice.

Under asymptotics where n and m grow at the same rate the fixed-effect estimator is

generally consistent but suffers from asymptotic bias. Several ways to estimate this bias

to restore the validity of inference based on the limit distribution have been proposed;

see Arellano and Hahn (2007) and Dhaene and Jochmans (2015). An alternative recently

explored by Gonçalves and Kaffo (2015) and Higgins and Jochmans (2024) is to use the

bootstrap to replicate the distribution of the fixed-effect estimator, including its bias. This

allows to perform inference based on the bootstrap distribution in the usual manner, i.e.,

no adjustment for the presence of bias needs to be made. The difficulty here lies in devising

a bootstrap scheme that correctly reproduces the bias. Higgins and Jochmans (2024) show

that the parametric bootstrap does so in quite general nonlinear models. Gonçalves and

Kaffo (2015) focus on the linear autoregressive model and show that the wild bootstrap

permits inference using the within-group estimator. They also demonstrate the failure of

several other conventional bootstrap schemes to replicate bias, illustrating the difficulty in

devising a successful procedure. An important limitation of the methods available to date

is that they cannot handle unspecified feedback processes, leaving open the question of how

to do so and, indeed, whether or not this is possible.

In this paper we study the linear model where the errors are allowed to be correlated

2



with both past and future regressors. This is the workhorse model in applied economics.

We show that a version of the moving block bootstrap of Künsch (1989), where blocks of

adjacent cross-sections are resampled with replacement, correctly replicates the distribution

of the within-group estimator under asymptotics where n/m → c ∈ [0,+∞). This bootstrap

scheme was not considered in Gonçalves and Kaffo (2015). Gonçalves (2011) did show

that this procedure is capable of yielding correct inference in our model even under the

additional complication of cross-sectional dependence. However, the assumptions under

which she established this result include a condition on n and m that renders the bias

of the estimator small relative to its standard deviation; in our context, this amounts to

the rate condition n/m → 0. Here, instead, we focus on the ability of the moving block

bootstrap to replicate the bias when m need not be small relative to n and we abstract

from cross-sectional dependence. Nevertheless, as the expression of the bias would remain

unchanged, our main findings should generalize to such a situation.

Our contribution should be interpreted against the backdrop of a recent interest in the

validity of the bootstrap in the presence of (asymptotic) bias; see also Cavaliere, Gonçalves,

Nielsen and Zanelli (2024) in addition to the work already mentioned above. We conjecture

that the validity of our bootstrap scheme extends to a large class of nonlinear problems.

We have established this to be the case for the variance estimator in the classical many

normal means problem of Neyman and Scott (1948). A more general theory is left for

future work.

The paper is structured as follows. In the next section we first formally state our model

and assumptions, and derive the limit distribution of the within-group estimator. This

yields a somewhat more general expression of its asymptotic bias than is available in the

literature. The following section introduces the moving block bootstrap and states our

main result—that is, the distribution of the bootstrap within-group estimator, centered

around the within-group estimator and conditional on the data, is consistent for the limit

distribution of the within-group estimator centered around the truth—together with its

chief implications for estimation and inference. A final section reports on a numerical

experiment that was conducted to support our claims. All proofs are collected in the
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Appendix.

2 Linear regression with fixed effects

We are interested in estimation of and inference on the slope vector β in the linear model

yit = αi + x′
itβ + εit, E(εit) = 0, E(xitεit) = 0,

from n×m panel data, treating the n intercepts α1, . . . , αn as unknown parameters to be

estimated.

We will work under a set of three assumptions which we state next. These assumptions

are standard in the literature. The first assumption contains moment requirements and

mixing conditions.

Assumption 1.

(i) The variables xit and εit have uniformly bounded moments of order 2r for some r > 2.

(ii) The variables xitεit have uniformly bounded moments of order 3r.

(iii) The variables xit and εit are independent across i.

(iv) The processes {(xit, εit)} are stationary mixing and their mixing coefficients, ai, satisfy

sup
1≤i≤n

ai(h) = O(h−s)

for some s > 4r/r−2.1

The second assumption states conventional rank conditions on certain covariance matrices.

Here and in the sequel we let zit := xit − E(xit).

1We recall that

ai(h) := sup
1≤t≤m

sup
A∈Ait

sup
B∈Bit+h

|P(A ∩B)− P(A)P(B)|,

for Ait and Bit the sigma algebras generated by the sequences (xit, εit), (xit−1, εit−1), . . . and

(xit, εit), (xit+1, εit+1), . . ., respectively.
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Assumption 2.

(i) The covariance matrix Σn,m := 1/nm
∑n

i=1

∑m
t=1 E(zitz′it) is uniformly positive definite.

(ii) The variance-covariance matrix of 1/√nm
∑n

i=1

∑m
t=1 zitεit,

Ωn,m := 1/nm

n∑
i=1

m∑
t=1

(
E(zitz′itε2it) +

m−1∑
τ=1

(m−τ)/m E((zitz′it+τ + zit+τz
′
it) εitεit+τ )

)
,

is uniformly positive definite.

The third assumption states the asymptotic approximation under which we proceed.

Assumption 3. n,m → ∞ with n/m → c ∈ [0,+∞).

Because we allow for E(xitεit+τ ) and E(xit+τεit) to be non-zero when τ ̸= 0, both the

within-group least-squares estimator and generalized method-of-moment estimators as in

Arellano and Bond (1991) will be inconsistent, in general, under asymptotics where m

is held fixed.2 In fact, it would appear that β is not point identified in such a framework

without further conditions. Reversely, asymptotics where n does not diverge are unsuitable

for typical microeconometric applications.

The within-group estimator of β is

β̂ :=

(
n∑

i=1

m∑
t=1

(xit − x̄i)(xit − x̄i)
′

)−1( n∑
i=1

m∑
t=1

(xit − x̄i)(yit − ȳi)

)
,

where ȳi := 1/m
∑m

t=1 yit and x̄i := 1/m
∑m

t=1 xit. Under Assumptions 1-3 this estimator is

consistent and asymptotically normally-distributed, but its limit distribution features an

asymptotic bias term unless n/m → 0.

In the following theorem, we let Υ := limn,m→∞Υn,m for Υn,m := Σ−1
n,mΩn,mΣ

−1
n,m.

2In the conventional first-order autoregressive model, for example, xit = yit−1 and εit ∼ i.i.d.(0, σ2),

and so E(xitεit+τ ) = 0 but E(xit+τεit) = βτ−1σ2 ̸= 0 for all τ > 0. This, then, leads to the well-known

Nickell (1981) bias in the within-group estimator. More generally, while moment-based strategies are

available that can handle situations where E(xit+τεit) ̸= 0, these approaches require that E(xitεit+τ ) = 0

at least for two known values of τ ≤ m − t to yield valid moment conditions that can be exploited to

construct an estimator; see Arellano (2003, Chapter 8).
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Theorem 1. Let Assumptions 1-3 hold. Then

√
nm (β̂ − β − Σ−1

n,mbn,m/m)
L→ N(0, Υ ),

where bn,m := −1/n
∑n

i=1

∑m−1
τ=1

(m−τ)/m (E(zitεit+τ ) + E(zit+τεit)) .

Theorem 1 generalizes results available for models with predetermined regressors generated

through a specified process such as those derived in Hahn and Kuersteiner (2002) and

Chudik, Pesaran and Yang (2018).

3 Moving block bootstrap

Our bootstrap scheme consists of applying the moving block bootstrap of Künsch (1989)

in the time-series dimension of the data, jointly for all cross-sectional units. Moreover, for

integers p and q with m = p×q, we randomly select p blocks of q consecutive cross-sections

from the original data; the blocks may overlap. Our bootstrap sample is then obtained on

concatenating these p blocks. If we let ϖ1, . . . ϖp be a random sample from the discrete

uniform distribution on {0, . . . ,m− q}, the bootstrap time series {(y∗it, x∗
it)} is generated as

y∗i (p′−1)q+q′ := yiϖp′+q′ , x∗
i (p′−1)q+q′ := xiϖp′+q′ ,

for 1 ≤ p′ ≤ p and 1 ≤ q′ ≤ q. Here, the random variables ϖ1, . . . , ϖp select starting points

for the different blocks. When the block length, q, is set to one we recover the bootstrap

as originally introduced by Efron (1979) although, in our setting, we will require q to grow

with m.

The within-group estimator computed from the bootstrap sample so constructed equals

β̂∗ :=

(
n∑

i=1

m∑
t=1

(x∗
it − x̄∗

i )(x
∗
it − x̄∗

i )
′

)−1( n∑
i=1

m∑
t=1

(x∗
it − x̄∗

i )(y
∗
it − ȳ∗i )

)
,

where ȳ∗i := 1/m
∑m

t=1 y
∗
it and x̄∗

i := 1/m
∑m

t=1 x
∗
it.

The following theorem is our main result. In it, as usual, we let P∗ denote a probability

computed with respect to the bootstrap measure, that is, conditional on the original data.
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Theorem 2. Let Assumptions 1-3 hold and suppose that q → ∞ with q = o(
√
m). Then

P
(
sup
a

∣∣∣P∗(
√
nm(β̂∗ − β̂) ≤ a)− P(

√
nm(β̂ − β) ≤ a)

∣∣∣ > ϵ

)
= o(1)

for any ϵ > 0.

This result generalizes the findings in Gonçalves (2011), where Assumption 3 is replaced

by the stronger requirement that n/m → 0. Because the bias in
√
nm(β̂− β) is of the order√

n/m, her rate condition ensures that the limit distribution of the within-group estimator

does not feature a bias term.

Theorem 2 has a number of useful implications. A first is that inference based on the

bootstrap remains valid in the presence of asymptotic bias. To see this, say we wish to

perform inference on linear contrasts of the form θ := c′β, where c is a chosen vector of

conformable dimension. For α ∈ (0, 1), let

Q̂α := inf{Q : α ≤ P∗(θ̂∗ − θ̂ ≤ Q)},

with θ̂ := c′β̂ and θ̂∗ := c′β̂∗. By van der Vaart (2000, Lemma 23.3) we have that, under

the conditions of Theorem 2,

lim
n,m→∞

P(θ̂ − Q̂α ≤ θ) → α,

which allows the construction of confidence intervals and decision rules to conduct inference

on θ.

Theorem 2 also implies that the median of the bootstrap distribution converges to the

median of the limit distribution which, by Theorem 1, equals the asymptotic bias. Hence,

β̌ := β̂ −median∗(β̂∗ − β̂).

is a bootstrap-based bias-corrected estimator of β.

The variance of the limit distribution in Theorem 1 can be estimated using conventional

HAC methods or by means of resampling via the moving block bootstrap. To describe the

latter way, consider

Ω̂∗
n,m := 1/np

n∑
i=1

p∑
p′=1

Vϖp′
V ′
ϖp′

, Vϖ :=

(
1/√q

q∑
q′=1

(xiϖ+q′ − x̄∗
i ) ϵ̂

∗
iϖ+q′

)
,
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where ϵ̂∗it := (yit − ȳ∗i ) − (xit − x̄∗
i )β̂

∗ are bootstrap residuals. This is an estimator of the

(conditional) bootstrap variance

Ω̂n,m := var∗

(
1/√nm

n∑
i=1

m∑
t=1

(x∗
it − x̄∗

i ) ε̂
∗
it

)
,

where ε̂∗it := (y∗it − ȳ∗i ) − (x∗
it − x̄∗

i )β̂. The latter, in turn, is an estimator of Ωn,m; it is

well-known that it can be computed without resampling the data (see Künsch 1989). If we

further introduce the shorthands

Σ̂∗
n,m := 1/nm

n∑
i=1

m∑
t=1

(x∗
it − x̄∗

i )(x
∗
it − x̄∗

i )
′, Σ̂n,m := 1/nm

n∑
i=1

m∑
t=1

(xit − x̄i)(xit − x̄i)
′,

we can define

Υ̂ ∗ := (Σ̂∗
n,m)

−1Ω̂∗
n,m(Σ̂

∗
n,m)

−1, Υ̂ := Σ̂−1
n,mΩ̂n,mΣ̂

−1
n,m.

By the same arguments as in Gonçalves (2011, Theorem B.1 and its proof) we can verify

that Υ̂ ∗ − Υ
P ∗
→ 0 and Υ̂ − Υ

P→ 0.

Combined with our theorems, this yields two additional results. The first of these is

that inference can be performed using the normal approximation to our bias-corrected

estimator, using Υ̂ . The second is that the reverse-percentile bootstrap can be applied to

studentized quantities to perform inference in the same way as before. In the context of

linear contrasts of the form θ = c′β, for example, if we let σ̂∗2 := c′ Υ̂ ∗c and σ̂2 := c′ Υ̂ c,

and redefine

Q̂α := inf{Q : α ≤ P∗((θ̂∗−θ̂)/σ̂∗ ≤ Q)},

then P(θ̂ − σ̂ Q̂α ≤ θ) → α under the assumptions of Theorem 2. This implies that

decision rules for null hypotheses on θ involving critical values obtained from the bootstrap

distribution of (θ̂∗−θ̂)/σ̂∗ deliver asymptotic size control without the need to correct for bias.
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Table 1: Quantile estimates

p q 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

(n,m) = (200, 200)

40 5 0.0726 0.1497 0.2327 0.3214 0.4161 0.5168 0.6239 0.7384 0.8617

20 10 0.0880 0.1710 0.2581 0.3499 0.4466 0.5481 0.6548 0.7663 0.8822

10 20 0.0963 0.1780 0.2632 0.3536 0.4497 0.5520 0.6601 0.7735 0.8903

(n,m) = (500, 500)

50 10 0.0859 0.1727 0.2631 0.3572 0.4547 0.5558 0.6605 0.7689 0.8816

25 20 0.0940 0.1825 0.2737 0.3682 0.4664 0.5677 0.6724 0.7802 0.8903

20 25 0.0963 0.1843 0.2750 0.3693 0.4672 0.5685 0.6734 0.7815 0.8917

4 Simulations

To support Theorem 2 we report some numerical results. Consider a stationary first-order

autoregression with standard-normal innovations, that is

yit = xitβ + εit

with εit ∼ i.i.d. N(0, 1) for all 1 ≤ t ≤ m, xi1 ∼ i.i.d. N(0, 1/(1−β2)), and xit = yit−1 for

2 ≤ t ≤ m. The within-group estimator is invariant to the distribution of the fixed effects,

so setting αi = 0 for all 1 ≤ i ≤ n is without loss of generality. It is well-known that, here,

√
nm(β̂ − β) = −

√
n/m(1 + β) +

√
1/1−β2 N(0, 1) + oP (1)

as n,m → ∞. In Table 1 we report the average (over 10,000 Monte Carlo replications) of

the bootstrap distribution of
√
nm(β̂∗−β̂) (as computed using 1,999 bootstrap replications)

evaluated at the percentiles of the normal distribution in the above limit statement (which

is not centered at zero). This effectively yields a QQ-plot, although we provide it in tabular

form. We do this for two different sample sizes (combinations of n and m) and for various

choices of the number and length of the bootstrap blocks (p and q). The table concerns

simulations under a data generating process where β = 0. It shows that the quantiles of the
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bootstrap distribution are, on average, close to those of the limit distribution. The same

phenomenon was equally observed in a wider set of simulation designs and also carries over

to the bootstrap distribution of the studentized estimator using the variance estimators

given above.

Appendix

For notational simplicity, and without loss of generality, we take xit to be univariate

throughout the appendix.

Proof of Theorem 1. From the definition of β̂,

√
nm(β̂ − β) = Σ̂−1

n,m

(
1/√nm

n∑
i=1

m∑
t=1

(xit − x̄i) εit

)
,

where, recall, Σ̂n,m = 1/nm
∑n

i=1

∑m
t=1(xit − x̄i)

2.

We first show that |Σ̂n,m−Σn,m| = oP (1). By using the triangle inequality we can write

|Σ̂n,m −Σn,m| ≤ |Σ̂n,m − Σ̌n,m|+ |Σ̌n,m −Σn,m|, (A.1)

for

Σ̌n,m := 1/nm
n∑

i=1

m∑
t=1

(xit − E(xi))
2 = 1/nm

n∑
i=1

m∑
t=1

z2it.

We proceed by showing that each of the terms on the right-hand side converges to zero in

probability.

For the first term in (A.1), on working out the square and re-arranging we observe that

Σ̂n,m − Σ̌n,m = −1/n
n∑

i=1

z̄2i ,

with z̄i := 1/m
∑m

t=1 zit. Therefore, for any ϵ > 0,

P(|Σ̂n,m − Σ̌n,m| > ϵ) ≤ E(|Σ̂n,m − Σ̌n,m|)
ϵ

≤
1/n
∑n

i=1 E(z̄2i )
ϵ

= O(m−1)

by an application of Markov’s inequality in the first step, the Cauchy-Schwarz inequality

in the second step, and the fact that sup1≤i≤n E(z̄2i ) = O(m−1). The latter follows from
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Hansen (1991, Corollary 3). Moreover, by Assumption 1 the time-series processes {zit}

are strong mixing with mixing coefficients ai for which sup1≤i≤n ai(h) =: ā(h) satisfies the

summability condition
∑+∞

h=1 ā(h)
1/2−1/r < +∞ for some r > 2 for which sup1≤i≤n E(|zit|r)

is bounded. Therefore, by an application of Hansen’s (1991) corollary, we can deduce that

sup1≤i≤n E
(
(
∑m

t=1 zit)
2
)
≲
∑m

t=1 sup1≤i≤n E(|zit|r)
2/r = O(m),

where, here and later, we use A ≲ B to indicate that there exists a finite constant C such

that A ≤ C B. From this it then follows that sup1≤i≤n E(z̄2i ) = O(m−1), as claimed. This

handles the first term in (A.1).

For the second term in (A.1), we have

Σ̌n,m −Σn,m = 1/nm
n∑

i=1

m∑
t=1

(z2it − E(z2it)).

Therefore, for any ϵ > 0,

P
(∣∣Σ̌n,m −Σn,m

∣∣ > ϵ
)
≤

1/n2
∑n

i=1 E((1/m
∑m

t=1(z
2
it − E(z2it)))

2
)

ϵ2
= O(n−1m−1),

by an application of Chebychev’s inequality and the fact that, by another application of

Hansen (1991, Corollary 3), sup1≤i≤n E
(
(
∑m

t=1(z
2
it − E(z2it)))

2
)
= O(m) follows in the same

way as before. With both right-hand side terms of (A.1) oP (1) we have thus shown the

desired result that |Σ̂n,m −Σn,m| = oP (1).

We next derive the limit distribution of the within-group least-squares normal equations,

1/√nm

n∑
i=1

m∑
t=1

(xit − x̄i) εit.

Adding and subtracting E(xit)(εit − ε̄i) to the summands and re-arranging allows us to

write this as

1/√nm

n∑
i=1

m∑
t=1

zitεit − (
√

n/m) 1/n

n∑
i=1

(
1/√m

m∑
t=1

zit

)(
1/√m

m∑
t=1

εit

)
, (A.2)

and we analyse each of the terms in turn.

The first term in (A.2) is a scaled sample average of zero-mean random variables with

variance covariance matrix Ωn,m that satisfies the conditions of White (2000, Theorem 5.20)
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(with the required order of mixing following from Assumption 1 together with Theorem

3.49 of White (2000)). Therefore, it converges in law to a normal random variable with

mean zero and variance limn,m→∞ Ωn,m.

The second term in (A.2), on the other hand, will generate bias. To see this we introduce

χi :=

(
1/√m

m∑
t=1

zit

)(
1/√m

m∑
t=1

εit

)
= 1/m

m∑
t1=1

m∑
t2=1

zit1εit2 .

Recalling that E(zitεit) = 0 we have

E(χi) =
m−1∑
τ=1

(m−τ/m) (E(zitεit+τ ) + E(zit+τεit)) ,

and so −1/n
∑n

i=1 E(χi) = bn,m. We now show that

1/n
n∑

i=1

(χi − E(χi)) = oP (1). (A.3)

For any ϵ > 0, by Chebychev’s inequality and independence of the data in the cross-section,

P

(∣∣∣∣∣1/n
n∑

i=1

(χi − E(χi))

∣∣∣∣∣ > ϵ

)
≤ 1

n

1/n
∑n

i=1 E((χi − E(χi))
2)

ϵ2
≤ 1

n

sup1≤i≤n var(χi)

ϵ2
,

so that it suffices to show that sup1≤i≤n var(χi) = O(1). Note that the variance of mχi

equals

E

( m∑
t1=1

zit1

)2( m∑
t2=1

εit2

)2
− E

(
m∑

t1=1

m∑
t2=1

zit1εit2

)
E

(
m∑

t1=1

m∑
t2=1

zit1εit2

)
. (A.4)

For the first term in (A.4), the Cauchy-Schwarz inequality yields

E

( m∑
t1=1

zit1

)2( m∑
t2=1

εit2

)2
 ≤

√√√√√E

( m∑
t1=1

zit1

)4

√√√√√E

( m∑
t2=1

εit2

)4
,

while, by an application Hansen (1991, Corollary 3),

sup1≤i≤n E
(
(
∑m

t=1 zit)
4
)1/4

≲

√√√√ m∑
t=1

sup
1≤i≤n

E(|zit|r)2 = O(m
1/2),

sup1≤i≤n E
(
(
∑m

t=1 εit)
4
)1/4

≲

√√√√ m∑
t=1

sup
1≤i≤n

E(|εit|r)2 = O(m
1/2),
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so that sup1≤i≤n E
((∑m

t1=1 zit1
)2 (∑m

t2=1 εit2
)2)

= O(m2). For the second term in (A.4), we

have

sup
1≤i≤n

E

(
m∑

t1=1

m∑
t2=1

zit1εit2

)
≤

√√√√√ sup
1≤i≤n

E

∣∣∣∣∣
m∑
t=1

zit

∣∣∣∣∣
2

√√√√√ sup

1≤i≤n
E

∣∣∣∣∣
m∑
t=1

εit

∣∣∣∣∣
2
 = O(m),

with the order of magnitude already having been established above. It thus follows that

the term in (A.4) is O(m2) uniformly, and so that sup1≤i≤n var(χi) = O(1). Therefore (A.3)

holds.

Combined all results obtained reveals that

√
nm(β̂ − β) = 1/√nm

n∑
i=1

m∑
t=1

Σ−1
n,mzitεit + (

√
n/m)Σ−1

n,mbn,m + oP (1),

from which the theorem follows readily.

Proof of Theorem 2 From the definition of β̂∗,

√
nm(β̂∗ − β̂) = (Σ̂∗

n,m)
−1

(
1/√nm

n∑
i=1

m∑
t=1

(x∗
it − x̄∗

i ) ε̂
∗
it

)
, (A.5)

where

Σ̂∗
n,m = 1/nm

n∑
i=1

m∑
t=1

(x∗
it − x̄∗

i )
2

and ε̂∗i (p′−1)q+q′ := ε̂iϖp′+q′ , for 1 ≤ p′ ≤ p and 1 ≤ q′ ≤ q, are the resampled residuals

associated with the within-group estimator computed from the original data; moreover,

ε̂it := (yit − ȳi) − (xit − x̄i)β̂. As in the proof of Theorem 1 we will proceed in multiple

steps.

We first show that |Σ̂∗
n,m − Σ̂n,m| = oP ∗(1), that is, that

P(P∗(|Σ̂∗
n,m − Σ̂n,m| > ϵ∗) > ϵ) = o(1)

for all ϵ∗ > 0 and ϵ > 0. Because

Σ̂∗
n,m − Σ̂n,m = 1/nm

n∑
i=1

m∑
t=1

(x∗
it
2 − x2

it)− 1/n
n∑

i=1

(x̄∗
i
2 − x̄i

2), (A.6)

13



it suffices to show that each of the terms on the right-hand side is oP ∗(1); we handle them

in turn next.

For the first term in (A.6) we first add and subtract E∗(x∗
it
2) to the summand in a first

step and then add and subtract E(xit
2) in a second step. We then obtain the decomposition

1/nm
n∑

i=1

m∑
t=1

(x∗
it
2 − x2

it) = 1/nm

n∑
i=1

m∑
t=1

(
x∗
it
2 − E (xit

2)
)
+ 1/nm

n∑
i=1

m∑
t=1

(
E(x2

it)− E∗(x∗
it
2)
)

− 1/nm

n∑
i=1

m∑
t=1

(
x2
it − E∗(x∗

it
2)
)

on re-arranging terms. For the first of these three terms, by iterated application of Markov’s

inequality,

P

(
P∗

(∣∣∣∣∣1/nm
n∑

i=1

m∑
t=1

(
x∗
it
2 − E(x2

it)
)∣∣∣∣∣> ϵ∗

)
> ϵ

)
≲ E

(
E∗

(∣∣∣∣∣1/nm
n∑

i=1

m∑
t=1

(
x∗
it
2 − E(x2

it)
)∣∣∣∣∣
))

for all ϵ∗ and ϵ > 0. Furthermore,

E∗

(∣∣∣∣∣1/nm
n∑

i=1

m∑
t=1

(
x∗
it
2 − E(x2

it)
)∣∣∣∣∣
)

≤ 1/n
n∑

i=1

E∗

(∣∣∣∣∣1/m
m∑
t=1

x∗
it
2 − 1/m

m∑
t=1

E(x2
it)

∣∣∣∣∣
)
.

Now, by definition of the moving block bootstrap scheme in the first step and the fact that

ϖ1, . . . , ϖp are i.i.d. from the uniform distribution on the set {0, 1, . . . ,m− q}—so that the

probability that ϖp′ = q′ is equal to 1/m−q+1 for all 1 ≤ p′ ≤ p and any 0 ≤ q′ ≤ m − q,

independent of p′ and q′—together with stationarity of the data in the second step, we have

E∗

(∣∣∣∣∣
(

1/m
m∑
t=1

x∗
it
2 − 1/m

m∑
t=1

E(x2
it)

)∣∣∣∣∣
)

= E∗

(∣∣∣∣∣
(

1/pq

p∑
p′=1

q∑
q′=1

x2
iϖp′+q′ − 1/m

m∑
t=1

E(x2
it)

)∣∣∣∣∣
)

= 1/(m−q+1)

m−q∑
t=0

(∣∣∣∣∣
(

1/q

q∑
q′=1

(x2
it+q′ − E(x2

it+q′))

)∣∣∣∣∣
)
.

Hence, E
(
E∗ (∣∣1/nm∑n

i=1

∑m
t=1

(
x∗
it
2 − E(x2

it)
)∣∣)) is bounded from above by

1/nq(m−q+1)

n∑
i=1

m−q∑
t=0

E

(∣∣∣∣∣
(

q∑
q′=1

(x2
it+q′ − E(x2

it+q′))

)∣∣∣∣∣
)

= O(q−
1/2) = o(1),

where the order of magnitude follows from the, by now familiar, arguments from Hansen

(1991). This handles the first of the three right-hand side terms in the decomposition at

14



the start of this paragraph. For the second term, by the triangle inequality in a first step

and iterating the Cauchy-Schwarz inequality in the second step

E

(∣∣∣∣∣1/nm
n∑

i=1

m∑
t=1

(
E(x2

it)− E∗(x∗
it
2)
)∣∣∣∣∣
)

≤ 1/nm
n∑

i=1

E

(∣∣∣∣∣E∗

(
m∑
t=1

(
x∗
it
2 − E(x2

it)
))∣∣∣∣∣

)

≤ 1/nm

n∑
i=1

√√√√√E

E∗

∣∣∣∣∣
m∑
t=1

(x∗
it
2 − E(x2

it))

∣∣∣∣∣
2
.

Using Gonçalves and White (2005, Lemma A.1) we have

sup
1≤i≤n

E

E∗

∣∣∣∣∣
m∑
t=1

(x∗
it
2 − E(x2

it))

∣∣∣∣∣
2
 = O(m) +O(q2).

Therefore, by Markov’s inequality,

P

(∣∣∣∣∣1/nm
n∑

i=1

m∑
t=1

(
E(x2

it)− E∗(x∗
it
2)
)∣∣∣∣∣ > ϵ

)
= O(

√
m/m + q/m) = o(1)

for all ϵ > 0. This handles the second term. Finally, for the third term in the decomposition,

1/nm
∑n

i=1

∑m
t=1

(
x2
it − E∗(x∗

it
2)
)
, we add and subtract E(x2

it) to each of the summands to

see that it equals 1/nm
∑n

i=1

∑m
t=1 (x

2
it − E(x2

it))+ 1/nm
∑n

i=1

∑m
t=1

(
E(x2

it)− E∗(x∗
it
2)
)
. The

second of these terms has already been shown to be oP ∗(1). Thus,

1/nm
n∑

i=1

m∑
t=1

(
x2
it − E∗(x∗

it
2)
)
= 1/nm

n∑
i=1

m∑
t=1

(
x2
it − E(x2

it)
)
+ oP ∗(1).

Here,

P

(∣∣∣∣∣1/nm
n∑

i=1

m∑
t=1

(
x2
it − E(x2

it)
)
> ϵ

∣∣∣∣∣
)

≤ E (|1/nm
∑n

i=1

∑m
t=1 (x

2
it − E(x2

it))|)
ϵ

≤
1/nm

∑n
i=1 E (|

∑m
t=1 (x

2
it − E(x2

it))|)
ϵ

≤
1/m

√
sup1≤i≤n E

(
|
∑m

t=1 (x
2
it − E(x2

it))|
2
)

ϵ

is o(m−1/2) for any ϵ > 0 by Hansen (1991, Corollary 3). We may then conclude that the

first right-hand side term in (A.6) is oP ∗(1).
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For the second term in (A.6), we can add and subtract terms to write

1/n
n∑

i=1

(x̄∗
i
2 − x̄i

2) = 1/n

n∑
i=1

(x̄∗
i − E(x̄i))

2 + 2/n

n∑
i=1

(x̄∗
i − x̄i)E(x̄i)− 1/n

n∑
i=1

z̄2i ,

and we have already shown that 1/n
∑n

i=1 z̄
2
i = oP (1) in the proof of Theorem 1. We next

look at the remaining two terms on the right-hand side. For the first one, because we have

x̄∗
i − E(x̄i) = 1/m

m∑
t=1

(x∗
it − E(xit)) = 1/pq

p∑
p′=1

q∑
q′=1

(xiϖp′+q′ − E(xit)) = 1/pq

p∑
p′=1

q∑
q′=1

ziϖp′+q′ ,

we obtain

(x̄∗
i − E(x̄i))

2 = 1/p2q2
p∑

p′1=1

q∑
q′1=1

p∑
p′2=1

q∑
q′2=1

ziϖp′1
+q′1

ziϖp′2
+q′2

.

Its expectation conditional on the data factors as the sum of two terms; the first corresponds

to contributions where p′1 = p′2 and the second collects the terms where p′1 ̸= p′2. Moreover,

E∗ ((x̄∗
i − E(x̄i))

2) = 1/pq2 1/(m−q+1)

m−q∑
t=0

(
q∑

q′=1

zit+q′

)2

+

(
1/q(m−q+1)

m−q∑
t=0

q∑
q′=1

zit+q′

)2

.

Here, the last term involves the bootstrap mean E∗(z̄∗i ) = 1/q(m−q+1)
∑m−q

t=0

∑q
q′=1 zit+q′ . By

the Cauchy-Schwarz inequality, E(|E∗(z̄∗i )|2) ≤ E(E∗(|z̄∗i |2)). Therefore, taking expectations

yields

E
(
E∗ ((x̄∗

i − E(x̄i))
2)) ≤ 1/pq2 1/(m−q+1)

m−q∑
t=0

E

∣∣∣∣∣
q∑

q′=1

zit+q′

∣∣∣∣∣
2
+ E(E∗(|z̄∗i |2)).

By an application of Hansen (1991, Corollary 3) and Gonçalves and White (2005, Lemma

A.1) to the first and the second term, respectively, and recalling that m = pq, we arrive at

sup
1≤i≤n

E
(
E∗ ((x̄∗

i − E(x̄i))
2)) = O(1/m) +O(m/m2 + q2/m2) = o(1),

from which 1/n
∑n

i=1 (x̄
∗
i − E(x̄i))

2 = oP ∗(1) follows. Next,

1/n
n∑

i=1

(x̄∗
i − x̄i)E(x̄i) ≤

√√√√1/n

n∑
i=1

(x̄∗
i − x̄i)2

√√√√1/n

n∑
i=1

E(x̄i)2.
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Here, the second right-hand side term is O(1) uniformly in 1 ≤ i ≤ n because xit has

uniformly-bounded moments of sufficient order while

1/n

n∑
i=1

(x̄∗
i − x̄i)

2 ≤ 2/n

n∑
i=1

(x̄∗
i − E(x̄i))

2 + 2/n

n∑
i=1

(x̄i − E(x̄i))
2 = oP ∗(1)

uniformly in 1 ≤ i ≤ n because both terms on the right have already been shown to be

oP ∗(1) uniformly in 1 ≤ i ≤ n. Through (A.6) we have thus shown that

|Σ̂∗
n,m − Σ̂n,m| = oP ∗(1)

holds.

We now turn to the numerator in (A.5),

1/√nm

n∑
i=1

m∑
t=1

(x∗
it − x̄∗

i ) ε̂
∗
it.

First, by the first-order condition of the within-group estimator it holds that

1/√nm

n∑
i=1

m∑
t=1

(xit − x̄i) ε̂it = 0,

where we recall that 1/m
∑m

t=1 ε̂it = 0 for all 1 ≤ i ≤ n by definition of the within-group

estimator. Therefore,

1/√nm

n∑
i=1

m∑
t=1

(x∗
it − x̄∗

i )ε̂
∗
it = 1/√nm

n∑
i=1

m∑
t=1

((x∗
it − x̄∗

i ) ε̂
∗
it − (xit − x̄i) ε̂it) .

Next, ε̂it = (yit − ȳi) − (xit − x̄i)β̂ = −(xit − x̄i)(β̂ − β) + (εit − ε̄i) by definition of the

within-group residuals. Furthermore, by definition of the moving block bootstrap, equally,

ε̂∗it = −(x∗
it − x̄∗

i )(β̂ − β) + (ε∗it − ε̄∗i ),

where ε∗i (p′−1)q+q′ := εiϖp′+q′ , for 1 ≤ p′ ≤ p and 1 ≤ q′ ≤ q. Substituting these expressions

into the summands above yields

1/√nm

n∑
i=1

m∑
t=1

(x∗
it − x̄∗

i ) ε̂
∗
it = 1/√nm

n∑
i=1

m∑
t=1

((x∗
it − x̄∗

i ) ε
∗
it − (xit − x̄i) εit) + oP ∗(1), (A.7)
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where the oP ∗(1) term is equal to

−

(
1/nm

n∑
i=1

m∑
t=1

(x∗
it − x̄∗

i )
2 − (xit − x̄i)

2

)
√
nm(β̂ − β);

the term in brackets is equal to Σ̂∗
n,m − Σ̂n,m, which had already been shown to be oP ∗(1),

and
√
nm(β̂ − β) = OP (1) from Theorem 1. It thus remains only to analyse the leading

term in (A.7). Re-centering both x∗
it and xit around E(xi) and re-arranging terms allows

to write this leading term as

1/√nm

n∑
i=1

m∑
t=1

(z∗itε
∗
it − zitεit)− (

√
n/m) 1/n

n∑
i=1

(χ∗
i − χi), (A.8)

where χi was defined in the proof of Theorem 1 and

χ∗
i :=

(
1/√m

m∑
t=1

z∗it

)(
1/√m

m∑
t=1

ε∗it

)
= 1/m

m∑
t1=1

m∑
t2=1

z∗it1ε
∗
it2
.

is its natural bootstrap counterpart. We again proceed term by term.

First, from Gonçalves and White (2002, Theorem 2.2), the first term on the right-hand

side of (A.8) satisfies

1/√nm

n∑
i=1

m∑
t=1

Ω−1/2
n,m (z∗itε

∗
it − zitεit)

L∗
→ N(0, I),

where
L∗
→ means convergence in law, conditional on the data. The remaining part in

(A.8) will contribute bias. Because 1/√m
∑m

t=1 z
∗
it = 1/√pq

∑p
p′=1

∑q
q′=1 ziϖp′+q′ and, equally,

1/√m
∑m

t=1 ε
∗
it = 1/√pq

∑p
p′=1

∑q
q′=1 εiϖp′+q′ we have

χ∗
i = 1/pq

p∑
p′1=1

q∑
q′1=1

p∑
p′2=1

q∑
q′2=1

ziϖp′1
+q′1

εiϖp′2
+q′2

.

Note that

χ∗
i = 1/pq

p∑
p′=1

q∑
q′1=1

q∑
q′2=1

ziϖp′+q′1
εiϖp′+q′2

+ 1/pq

p∑
p′1=1

q∑
q′1=1

∑
p′2 ̸=p′1

q∑
q′2=1

ziϖp′1
+q′1

εiϖp′2
+q′2

(A.9)

holds.
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The first term in (A.9) is close to a bootstrap-based covariance estimator in the sense

of Götze and Künsch (1996). Moreover,

1/pq

p∑
p′=1

q∑
q′1=1

q∑
q′2=1

ziϖp′+q′1
εiϖp′+q′2

= γ̂∗
i + q z̄∗i ε̄

∗
i ,

where

γ̂∗
i := 1/p

p∑
p′=1

1/√q

q∑
q′1=1

(ziϖp′+q′1
− z̄∗i )

1/√q

q∑
q′2=1

(εiϖp′+q′2
− ε̄∗i )

 .

We will first show that ∣∣∣∣∣1/n
n∑

i=1

(γ̂∗
i − E(χi))

∣∣∣∣∣ = oP ∗(1). (A.10)

To do so we first use arguments similar to those used in Gonçalves and White (2004, Proof

of Lemma B.1) to show that

sup
1≤i≤n

|γ̂∗
i − γ̂i| = oP ∗(1),

for γ̂i := m cov∗(z̄∗i , ε̄
∗
i ), an estimator of the long-run covariance. We then use Gonçalves

and White (2002, Corollary 2.1) to claim that sup1≤i≤n|γ̂i − E(χi)| = oP (1), from which

the desired result will follow.

Let

γ̃i := 1/p

p∑
p′=1

1/√q

q∑
q′1=1

(ziϖp′+q′1
− E∗(z̄∗i ))

1/√q

q∑
q′2=1

(εiϖp′+q′2
− E∗(ε̄∗i ))

 .

With Xiϖ := 1/√q
∑q

q′=1(ziϖ+q′ − E∗(z̄∗i )) and Yiϖ := 1/√q
∑q

q′=1(εiϖ+q′ − E∗(ε̄∗i )) we can

write

γ̃i = 1/p

p∑
p′=1

Xiϖp′
Yiϖp′

, γ̂i = E∗(XiϖYiϖ).

For any 1 < a ≤ 2, we have

E∗(|γ̃i − γ̂i|a) = 1/pa E∗

(∣∣∣∣∣
p∑

p′=1

(Xiϖp′
Yiϖp′

− E∗(Xiϖp′
Yiϖp′

))

∣∣∣∣∣
a)

.

Here the summands inside the expectation on the right-hand side are independent and

identically distributed zero-mean random variables, conditional on the data, and so, by an
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application of Burkholder’s inequality,

E∗(|γ̃i − γ̂i|a) ≲ 1/pa E∗

∣∣∣∣∣
p∑

p′=1

(Xiϖp′
Yiϖp′

− E∗(Xiϖp′
Yiϖp′

))2

∣∣∣∣∣
a/2
 .

Next, exploiting the fact that the ϖ1, . . . , ϖp are independent and identically distributed,

together with well-known inequalities on the expectation of powers of a sum of random

variables (as given in, e.g., von Bahr and Esseen 1965) we may bound the right-hand side

by

1/pa E∗

(
p∑

p′=1

∣∣∣(Xiϖp′
Yiϖp′

− E∗(Xiϖp′
Yiϖp′

))a
∣∣∣) = 1/pa−1 E∗ (|(XiϖYiϖ − E∗(XiϖYiϖ))

a|)

in a first step, and then by 2a/pa−1 E∗(|XiϖYiϖ|a) in a second step. By the Cauchy-Schwarz

inequality,

2a/pa−1 E∗(|XiϖYiϖ|a) ≤ 2a/pa−1

√
E∗(|Xiϖ|2a)

√
E∗(|Yiϖ|2a).

To prove that sup1≤i≤n|γ̃i − γ̂i| = oP ∗(1) we show that sup1≤i≤n E(E∗(|γ̃i − γ̂i|a)) = o(1) by

noting that

2a/pa−1 E
(√

E∗(|Xiϖ|2a)
√

E∗(|Yiϖ|2a)
)
≤ 2a/pa−1

√
E(E∗(|Xiϖ|2a))E(E∗(|Yiϖ|2a)),

and that

E(E∗(|Xiϖ|2a)) = 1/(m−q+1) qa

m−q∑
t=0

E

∣∣∣∣∣
q∑

q′=1

zit+q′

∣∣∣∣∣
2a
 = O(1),

E(E∗(|Yiϖ|2a)) = 1/(m−q+1) qa

m−q∑
t=0

E

∣∣∣∣∣
q∑

q′=1

εit+q′

∣∣∣∣∣
2a
 = O(1),

uniformly by Hansen (1991, Corollary 3). Indeed, putting everything together reveals that

sup
1≤i≤n

|γ̃i − γ̂i| = OP ∗(1/pa−1) = OP ∗((q/m)a−1) = oP ∗(1),

using that m = pq and recalling that a > 1.

Next, we observe that γ̃i − γ̂∗
i = 1/p2

∑p
p′1=1

∑p
p′2=1Xiϖp′1

Yiϖp′2
. Then

sup
1≤i≤n

|γ̃i − γ̂∗
i | ≤ sup

1≤i≤n

∣∣∣∣∣1/p
p∑

p′=1

Xiϖp′

∣∣∣∣∣ sup
1≤i≤n

∣∣∣∣∣1/p
p∑

p′=1

Yiϖp′

∣∣∣∣∣ = OP ∗(q/m) = oP ∗(1),
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using Gonçalves and White (2002, Theorem 2.2). By the triangle inequality, we have thus

shown that sup1≤i≤n|γ̂∗
i − γ̂i| = oP ∗(1). Finally, from Gonçalves and White (2002, Corollary

2.1), we have that

sup
1≤i≤n

|γ̂i − E(χi)| = oP (1).

From this, (A.10) follows.

To proceed, let X̃iϖ := 1/√q
∑q

q′=1 ziϖ+q′ and Ỹiϖ := 1/√q
∑q

q′=1 εiϖ+q′ . These are the

uncentered versions of Xiϖ and Yiϖ, respectively. The second term in (A.9) then writes as

1/pq

p∑
p′1=1

q∑
q′1=1

∑
p′2 ̸=p′1

q∑
q′2=1

ziϖp′1
+q′1

εiϖp′2
+q′2

= 1/p

p∑
p′1=1

∑
p′2 ̸=p′1

X̃iϖp′1
Ỹiϖp′2

.

We have E∗(X̃iϖp′1
Ỹiϖp′2

) = E∗(X̃iϖp′1
)E∗(Ỹiϖp′2

) because the ϖ1, . . . , ϖp are independent,

and so

E∗

1/p

p∑
p′1=1

∑
p′2 ̸=p′1

X̃iϖp′1
Ỹiϖp′2

 = (p− 1)q E∗(z̄∗i )E∗(ε̄∗i ).

Define

r∗i := 1/p

p∑
p′1=1

∑
p′2 ̸=p′1

(X̃iϖp′1
Ỹiϖp′2

− E∗(X̃iϖp′1
Ỹiϖp′2

)).

Then, collecting terms,

χ∗
i − χi = E(χi) + r∗i + q{z̄∗i ε̄∗i − E∗(z̄∗i )E∗(ε̄∗i )} −m{z̄i ε̄i − E∗(z̄∗i )E∗(ε̄∗i )}+ oP ∗(1).

By adding and subtracting terms to the each of the components making up the difference,

we can write z̄∗i ε̄
∗
i − E∗(z̄∗i )E∗(ε∗i ) as(

z̄∗i − E∗(z̄∗i )
)(
ε̄∗i − E∗(ε̄∗i )

)
+
(
z̄∗i − E∗(z̄∗i )

)
E∗(ε̄∗i ) +

(
ε̄∗i − E∗(ε̄∗i )

)
E∗(z̄∗i ).

From Fitzenberger (1997, Lemma A.1) and Gonçalves and White (2002, Theorem 2.2)

we have sup1≤i≤n|z̄∗i − E∗(z̄∗i )| = OP ∗(1/√m) and sup1≤i≤n|E∗(z̄∗i )| = OP (1/
√
m + q/m), and,

similarly, sup1≤i≤n|ε̄∗i − E∗(ε̄∗i )| = OP ∗(1/√m) and sup1≤i≤n|E∗(ε̄∗i )| = OP (1/
√
m + q/m). We

thus deduce that q sup1≤i≤n|z̄∗i ε̄∗i − E∗(z̄∗i )E∗(ε̄∗i )| = oP ∗(1). Proceeding in the same way

gives m sup1≤i≤n|z̄i ε̄i − E∗(z̄∗i )E∗(ε̄∗i )| = oP (1). Therefore,

1/n
n∑

i=1

((χ∗
i − χi)− E(χi)) = 1/n

n∑
i=1

r∗i + oP ∗(1),
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and we are left only with showing that 1/n
∑n

i=1 r
∗
i = oP ∗(1) to complete our derivation of

the asymptotic bias.

To do so, first, repeated adding and subtracting of E∗(X̃iϖ) and E∗(Ỹiϖ) allows to write

r∗i = (p−1)/p

p∑
p′=1

Xiϖp′
E∗(Ỹiϖ) + (p−1)/p

p∑
p′=1

Yiϖp′
E∗(X̃iϖ) + 1/p

p∑
p′1=1

∑
p′2 ̸=p′1

Xiϖp′1
Yiϖp′2

.

This corresponds to a Hoeffding decomposition (conditional on the data) into a Hájek

projection, which constitutes the first two right-hand side terms, and a remainder term.

We now proceed by looking at each of these three terms, in turn. We begin by showing

that

(p−1)/np
n∑

i=1

p∑
p′=1

Xiϖp′
E∗(Ỹiϖ) = oP ∗(1). (A.11)

As E∗(Xiϖp′
E∗(Ỹiϖ)) = 0, the conditional variance of the left-hand side of (A.11) equals

E∗

((p−1)/np
n∑

i=1

p∑
p′=1

Xiϖp′
E∗(Ỹiϖ)

)2
 = (p−1)2/pn2

n∑
i=1

n∑
j=1

E∗(XiϖXjϖ)E∗(Ỹiϖ)E∗(Ỹjϖ),

where we have used that

E∗

1/p2
p∑

p′1=1

p∑
p′2=1

Xiϖp′1
Xjϖp′2

 = E∗

(
1/p2

p∑
p′=1

Xiϖp′
Xjϖp′

)
= 1/pE∗ (XiϖXjϖ) ,

which holds because E∗(XiϖXjϖ′) = E∗(Xiϖ)E∗(Xjϖ′) = 0 whenever ϖ ̸= ϖ′. We can

expand the conditional variance as

(p−1)2/pn2

n∑
i=1

E∗(X2
iϖ)E∗(Ỹiϖ)

2 + (p−1)2/pn2

n∑
i=1

∑
j ̸=i

E∗(XiϖXjϖ)E∗(Ỹiϖ)E∗(Ỹjϖ).

Here, E∗(X2
iϖ) is a bootstrap estimator of the long-run variance of the scaled sample mean

√
m z̄i; this variance is uniformly bounded under our assumptions. Furthermore, from

Gonçalves and White (2002, Corollary 2.1), E∗(X2
iϖ) is uniformly consistent. Also, using

Fitzenberger (1997, Lemma A.1), sup1≤i≤n E∗(Ỹiϖ)
2 = OP (q/m+ q2/m3/2 + q3/m2). Therefore,

(p−1)2/pn2

n∑
i=1

E∗(X2
iϖ)E∗(Ỹiϖ)

2 = O(1/n)OP (1 + q/m1/2 + q2/m) = oP (1).
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Similarly, E∗(XiϖXjϖ) is a consistent estimator of the long-run covariance between the

scaled means
√
m z̄i and

√
m z̄j. Because the cross-sectional observations are independent,

|E∗(XiϖXjϖ)| = oP (1) when i ̸= j. We thus obtain

(p−1)2/pn2

n∑
i=1

∑
j ̸=i

E∗(XiϖXjϖ)E∗(Ỹiϖ)E∗(Ỹjϖ) = oP (p)

(
sup
1≤i≤n

E∗(Ỹiϖ)

)2

= oP (1).

Equation (A.11) follows by Markov’s inequality. By symmetry,

(p−1)/np
n∑

i=1

p∑
p′=1

Yiϖp′
E∗(X̃iϖ) = oP ∗(1)

can be shown in the same way.

Now turn to the remainder term. To show that

1/np
n∑

i=1

p∑
p′1=1

∑
p′2 ̸=p′1

Xiϖp′1
Yiϖp′2

= oP ∗(1), (A.12)

we begin by calculating its conditional variance,

1/n2

n∑
i=1

n∑
j=1

1/p2
p∑

p′1=1

∑
p′2 ̸=p′1

p∑
p′′1=1

∑
p′′2 ̸=p′′1

E∗(Xiϖp′1
Yiϖp′2

Xjϖp′′1
Yjϖp′′2

).

The conditional mean inside the summation is zero unless either (i) p′1 = p′′1 and p′2 = p′′2

or p′1 = p′′2 and p′2 = p′′1 because both Xiϖ and Yiϖ are mean zero and the ϖ1, . . . , ϖp are

independent. The contribution of the Case (i) terms to the conditional variance is given by

(p−1)/p 1/n2

n∑
i=1

n∑
j=1

E∗(Xiϖ Xjϖ)E∗(Yiϖ Yjϖ)

while the contribution of the Case (ii) terms equals

(p−1)/p 1/n2

n∑
i=1

n∑
j=1

E∗(XiϖYjϖ)E∗(Yiϖ Xjϖ).

Each of these two terms can be handled in the same way as before. For example, the first

term can be decomposed as

(p−1)/p 1/n2

n∑
i=1

E∗(X2
iϖ)E∗(Y 2

iϖ) + (p−1)/p 1/n2

n∑
i=1

∑
j ̸=i

E∗(Xiϖ Xjϖ)E∗(Yiϖ Yjϖ).
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Here, each contribution is again oP (1) because sup1≤i≤n E∗(X2
iϖ) and sup1≤i≤n E∗(Y 2

iϖ) are

OP (1) and sup1≤i ̸=j≤n E∗(XiϖXjϖ) and sup1≤i ̸=j≤n E∗(YiϖYjϖ) are oP (1). (A.12) follows

and, with it,

−1/n

n∑
i=1

(χ∗
i − χi) = bn,m + oP ∗(1).

The proof of the theorem is then complete.
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Cavaliere, G., S. Gonçalves, M. Ø. Nielsen, and E. Zanelli (2024). Bootstrap inference in

the presence of bias. Forthcoming in Journal of the American Statistical Association.

Chudik, A., M. H. Pesaran, and J.-C. Yang (2018). Half-panel jackknife fixed-effects esti-

mation of linear panels with weakly exogenous regressors. Journal of Applied Economet-

rics 33, 816–836.

Dhaene, G. and K. Jochmans (2015). Split-panel jackknife estimation of fixed-effect models.

Review of Economic Studies 82, 991–1030.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics 7,

1–26.

Fitzenberger, B. (1997). The moving blocks bootstrap and robust inference for linear least

squares and quantile regressions. Journal of Econometrics 82, 235–287.

24
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